World's 1st Trusted Ayurvedic Allergy Institute

On This Page

Amber Stone (Trinkant Mani – Kaharwa) – The Astrological and Ayurvedic Benefits

Introduction

Amber is fossilized tree resin (not sap), which has been appreciated for its color and natural beauty since Neolithic times. Amber is used as an ingredient in perfumes, as a healing agent in folk medicine, and as jewelry. There are five classes of amber, defined on the basis of their chemical constituents. Because it originates as a soft, sticky tree resin, amber sometimes contains animal and plant material as inclusions. Amber occurring in coal seams is also called resinite, and the term ambrite is applied to that found specifically within New Zealand coal seams. Properties according to Unani Medicine is that Kaharuba is neither hot nor cool. It is Ruksa in the second stage. Produces happiness, and gives strength to the heart, stomach, and intestine. It is astringent and hemostatic in action and may be used in cardiac weakness, palpitation, Epistaxis, hemoptysis, bacillary dysentery, bleeding piles, menorrhagia, and Uraksata either alone or with other medicines. For strengthening the intestine and stomach it is used with Mastagi powder. It stops bleeding from the injured part by sprinkling. It is used in the form of Pishti prepared with rose water or sandalwood water. Its Bhasma is not generally prepared.

एम्बर जीवाश्म वृक्ष राल (रस नहीं) है, जिसे नव पाषाण काल ​​से ही अपने रंग और प्राकृतिक सुंदरता के लिए सराहा गया है। एम्बर का उपयोग इत्र में एक घटक के रूप में, लोक चिकित्सा में उपचार, एजेंट (Agent) के रूप में और आभूषण के रूप में किया जाता है। एम्बर के पाँच वर्ग हैं, जिन्हें उनके रासायनिक घटकों के आधार पर परिभाषित किया गया है। क्योंकि यह एक नरम, चिपचिपे पेड़ के राल के रूप में उत्पन्न होता है, एम्बर में कभी-कभी जानवरों और पौधों की सामग्री भी शामिल होती है। कोयला परतों में पाए जाने वाले एम्बर को रेजिनाइट भी कहा जाता है, और एम्ब्राइट शब्द विशेष रूप से न्यूज़ीलैंड कोयला परतों में पाए जाने वाले एम्बर पर लागू होता है। यूनानी चिकित्सा के अनुसार गुण यह है कि कहारुबा न तो गर्म होता है और न ही ठंडा। यह दूसरे चरण में रुक्सा है। प्रसन्नता उत्पन्न करता है, हृदय, पेट और आंतों को शक्ति देता है। यह क्रिया में कसैला और हेमोस्टैटिक है और इसका उपयोग हृदय की कमजोरी, घबराहट, एपिस्टेक्सिस, हेमोप्टाइसिस, बेसिलरी पेचिश, रक्तस्रावी बवासीर, मेनोरेजिया और उराक्सटा में अकेले या अन्य दवाओं के साथ किया जा सकता है। आंत और पेट को मजबूत करने के लिए इसका प्रयोग मस्तगी चूर्ण के साथ किया जाता है। इसके छिड़काव से चोट लगे हिस्से से खून बहना बंद हो जाता है। इसका उपयोग चंदन की लकड़ी के पानी के साथ गुलाब जल से तैयार पिष्टी के रूप में किया जाता है। इसकी भस्म आमतौर पर तैयार नहीं की जाती है।

Ayurvedic View of Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber)

तृणकान्त प्रस्तरीभूत वानस्पतिक राल  है। केहरुबा फारसी शब्द है, जिसका अर्थ सूखी घास को खींचने वाला रत्न विशेष है। यह गोंद के समान स्वच्छ, पीताभ, चमकीला, छोटे-छोटे टकड़ों में मिलता है। यह पारदर्शक एवं पारभासक दिखाई देता  है। इसके टुकड़ों को ऊनी, रेशमी एवं सूती वस्त्र पर रगड़कर तृण से दो चार इंच ऊपर ही रखा  जाय तो तृण विशेष को अपनी ओर आकृष्ट कर पकड़ लेता है।  इसलिए इसे तृणकांत  कहते है। इसे रगड़ने से इसमें विद्युत शक्ति उत्पन्न हो जाती है।  कपडे से रगड़ने से इसमें से निम्बू की  सुगन्ध आती है। तृणकान्त श्वेत पाण्डु एवं पीताभ रक्त वर्ण में पाया  जाता है। इसमें हाइड्रोजन सल्फाइड अल्पांश मात्रा में हमेशा पाया जाता है।  ये १७० डिग्री से २०० डिग्री से  ताप पर गर्म करने पर गर्म हो जाता है। तथा २८० डिग्री से ३७५ डिग्री से ताप पर पिघल   जाता है। दियासलाई की लौ के निकट ले जाने पर जलने लगता है।  शोभा के लिए आभूषणों में इसका प्रयोग करते है। तृणकान्त रत्न की माला पहनने से गर्भपात की संभावना कम हो जाएगी। कहरुबा की उत्पत्ति वनस्पति से हुई है।  यह प्रस्तारीभूत  विरोज (राल) है जो करोड़ों वर्ष पूर्व शंकुधर वृक्षों से निकला था और अब भी इसमें फैले हुए इयोसीन काट के कीट मिलते हैं। कहरुबा फारसी शब्द है जिसका अर्थ है कह = सूखीघास , तृण- विशेष एवं रुबा – खींचने वाला मतलब सुखी घास को खींचने  वाला रत्न  विशेष। ये वर्मा, इटली, रूमानिया में मिलता है।  

Trikanta is a petrified vegetable resin. Kaharwa is a Persian word that means a special gemstone that pulls dry grass. It is clean, yellowish, and shiny like gum, and is available in small pieces. It appears transparent and translucent. If its pieces are rubbed on woolen, silk, or cotton cloth and kept two to four inches above the grass, it attracts the particular grass and catches it. That is why it is called Trinakant. By rubbing it, electrical power is generated in it. When rubbed with a cloth, it smells of lemon. Trinakant is found in white pandu and yellow blood color. Hydrogen sulphide is always found in small quantities in it. It becomes hot when heated at a temperature of 170 degrees to 200 degrees. It melts at temperatures from 280 degrees to 375 degrees. When taken near the flame of a match, it starts burning. It is used in jewelry for beauty. Wearing a rosary made of Trinkanta gemstone will reduce the chances of miscarriage. It is a resinous resin that emerged from conifers millions of years ago and is still found in widespread Eocene cutworms. Kahruba is a Persian word that means Kah = dry grass, grass – special, and Ruba – puller means a special gem that pulls dry grass. It is found in Burma, Italy, and Romania.

Astrological View of Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber)

उपरत्न वर्ग के खनिजपाषाण में काठिन्य, चमक, पारदर्शकता रत्नो  की अपेक्षा कम गुणवाले होते है। इनका मूल्य भी कम होता है। अतः इन्हें उपरत्न  कहा  जाता है। उपरत्नों की संख्या में मतभिन्नता है- आनन्दकन्दकार ने 9 उपरत्न माने है।  जबकि आयुर्वेदप्रकाशकार ने 15 उपरत्न माने है। बृहद योगतरंगिणीकार ने 4 ही उपरत्न  माने है। रसतरंगिणीकार ने छः उपरत्न माने है। आनन्दकन्दकार ने विमल, सस्यक, कान्त एवं तारकान्त को भी उपरत्न  में शामिल कर दिया है। बृहत् योग तरंगिणीकार ने मुक्ता प्रवाल को भी उपरत्न  वर्ग में मानकर और भी भ्र्म पैदा किया है।  आयुर्वेद प्रकाशकार ने ५ प्रचलित उपरत्नो के अतिरिक्त १० नए उपरत्न को इस वर्ग में शामिल किया है परन्तु सबसे अधिक रस तरंगिणी का मत ही प्रचलित है। 

Reference- आ. क. क्रि. व १/ १२

सूर्यकान्तश्चन्द्रकान्तस्तारकान्तस्तु कान्तक:  

वैक्रान्तश्च नृपावर्तस्सस्यको विमला तथा।

पैरोजश्च नवैतानि ह्युपरत्नानि निर्दिशित।। 

Reference: आयुर्वेद प्रकाश ५/ ६- ८

वैक्रान्तः सूर्यकान्तश्च चन्द्रकान्तश्तथैवं :  

राजावर्तो लालसंज्ञ: पैरोजाख्यस्तथा अपर: ।। 

मुक्ता शुक्तिस्तथा शेख: कर्पूरशमा अथ काचजा:  

मणयो नीलपीताद्या हन्ये विषहराश्च ये।। 

वह्यादिस्तम्भका ये ते सर्वे हि परीक्षकै:  

गणिता द्लुपरत्नेषु मणयो लोकविश्रुता: ।। 

Reference: बृहत् योग तरंगिण ४३/ ८२

मुक्ता विद्रुम शंखाश्व राजावर्तस्तथैव च। उपरत्नानि चत्वारि कथितानि मनीषिभिः।।  

Reference: Rasa Trangini. 23/ 154

वैक्रान्त सूर्यकान्त चन्द्रकांतो नृपो पल |

पेरोजकञ्च स्फटिकम क्षुद्र रत्न गणो हव्यम।।

There are six Uparatna as per Rasa Trangini 

  1. Vaikranta (Fluorite / Tormaline) 
  2. Suryakanta (Spinel) (Na, O, CaO, Al, 2SiO)
  3. Candrakant (Moonstone) (K, Si, O, Na, Al, Si)
  4. Raja-varta (Lapis Lazuli) (Na, Ca), (Al, SiO) (S, SO, Cl)
  5. Pairojaka (Turquoise)
  6. Sphatika (Rock crystal)

A few gems are also added to the list of Uparatna by NCISM and they mention a total 13 number of Upratnas. They are as follows:

  1. Vaikranta (Fluorite / Tormaline) 
  2. Suryakanta (Spinel) (Na, O, CaO, Al, 2SiO)
  3. Candrakant (Moonstone) (K, Si, O, Na, Al, Si)
  4. Raja-varta (Lapis Lazuli) (Na, Ca), (Al, SiO) (S, SO, Cl)
  5. Pairojaka (Turquoise)
  6. Sphatika (Rock crystal)
  7. Putika (Peridote)
  8. Trinkanta (Amber, Succinum)
  9. Rudhiram/ rudhir Putika (Carnelion)
  10. Palankam/ Palakam (Onyx, CaSO4, 2H2O)
  11. Vyomasma (Jade)
  12. Kosheyaashm
  13. Sougandhik
Ayurveda Classes and Courses Online

Upratna is Mentioned in Different Ayurvedic Literature

Upratna Name / Semi-Precious StoneAayurveda ParkashaAanand KandBrihat Yog TranginiRasa Trangini
Suryakanta+++
Chandrakant+++
Vaikrant+++
Rajavart++++
Perojak+++
Saphatik+
Taarkaant+
Kaant+
Sasyak+
Vimal+
Laalmani+
Mukta Shukti+
Shankh ++
Karpurashma+
Kaachmani+
Neelmani +
Peetmani +
Vishhar Mani +
Agni Stambhak Mani+
Jal Stambhak Mani++
Mukta +
Parvala+
Dr. Sahil Gupta - Famous Ayurvedic Allergy Specialist

Have A Health Issue?

Consult Online

- Dr. Sahil Gupta (B.A.M.S., M.H.A.)

Ayurvedic Allergy Specialist
CEO & Founder of IAFA®

Consult Now

Properties of Semi-Precious Stone (Upratna)

Name Chemical compositionStructureHardness Specific GravityRefractive indexDouble refraction
Fluorite (Vaikrant)CaF2Cubic43.181.43None
Spinel (Suryakant)MgAl2O4Cubic83.601.71- 1.73None
Moonstone (Chandrakant)KAlSi3O8Monoclinic62.571.52- 1.530.005
Lapis Lazuli (Rajavart)(Na, Ca)8, (Al, Si12 O24 (SO4) Cl2 (OH)Various5.52.801.50None
Turquoise (Perojaka)Cu Al6 (PO4)4 (OH)8 5 H2OTriclinic62.801.61- 1.650.004
Rock Crystal (Sphatika)SiO2Trigonal72.651.54- 1.550.009
Jade (Vyomashma)NA (AL, FE) Si2O6Monoclinic73.331.66- 1.680.012
Onyx (Palanka)SiO2Trigonal72.611.53- 1.540.004
Carnelian (Rudhiram, Akeek)SiO2Trigonal72.611.53- 1.540.004
Peridot (Putika)(Mg, Fe)2 SiO4Orthorhombic6.53.341.64- 1.690.036
Amber (Trinkant)C6 H16 OAmorphous2.51.081.54- 1.55N/ A

Upratna (Semi-Precious Stone) Indicated as a Substitute for Precious Stone as Per Astrological Science to Nullify the Maleficent Effect of Various Planets (Grahas) and to Treat the Roga (Disorders) Related to that Particular Planet.

Not everyone is affluent, and the affordability of precious stones remains beyond the means of many individuals. In light of this, semiprecious stones emerge as a viable and more accessible alternative. These gemstones, while not as costly as their precious counterparts, possess unique and appealing qualities. Embracing semi precious stones allows a broader spectrum of people to enjoy the beauty and symbolism associated with gemstones without the financial strain associated with acquiring precious ones.

Planet Precious Gem UsedSubstitute Semi-Precious Stone
Sun (Surya)Manikya (Ruby)
Moon (Chandra)Mukta (Pearl)
Mars (Mangala)Vidruma (Coral)
Mercury (Buddha)Markat (Emerald)
Jupiter (Guru)Pushapraga (Topaz)Trinkant (Amber)
Venus (Shukra)Vajra (Diamond)
Saturn (Shani)Neelam (Blue sapphire)
Rahu Gomeda (Hessonite)
Ketu Vaidurya (Cat’s eye stone)

Diseases Induced by Maleficent Effects of Planets (Greha Roga) or Diseases Induced by Dushkarma (Sinful Deeds) Done by the Rogi (Patient) i.e Karma Vipaka Siddhanta

Planet Diseases Caused
Sun Shoth (Inflammation in the body), Apsmar (Epilepsy), Paitikavikara, Jawara (Fever), Diseases of the eye, skin, and bone, rational fears, Bites from poisonous reptiles like snakes, weakening the digestive system, and constipation.
Moon Sleep diseases such as Anidra (insomnia) or somnambulism (sleepwalking), Kaphaj Kasa, Atisara, Alsaya, Agnimandya (Loss of appetite), Aruchi (Disinterest in food), Kamala (Jaundice), Chitudvega, Grehani, Hydrophobia, Fear of animals with horns, Problems concerning women, Hallucinations
MarsTrishna (Excessive thirst), Bilious disorders, Flatulence, Excessive fear of fire, Gulma, appendicitis, Kustha (Leprosy), eye disorder, Apsmar (Epilepsy), Rakta Vikara, Majja Vikar (Bone marrow diseases), Kandu (Itching), Ruksha Twaka (Rough skin).
MercuryLack of self-confidence, Gala Rog (Throat problems like goiter, etc.), Nasagata Rog (Nose Diseases), Vata- Kaphaj Roga, Cold and Cough, Flatulence, Poisoning. Twaka Dosha (Skin diseases), Vicharchika. Jaundice.
Jupiter Gulma, Appendicitis, Karan Vedna (an ear disease), Sanyas.Frequent litigation, Problems with friends, parents, and relatives.
Venus Pandu (Anaemia), Netra Roga (Disorders of the eye), Flatulence, Cough, Mutrakrich (Urinary disease), Prameha (Diabetes), Syphilis, Shukra-Vyapati (Low sperm count), Impotence, Dryness of Mouth, Constipation, Irrational fears.
Saturn Flatulence, Cough, Pain in the legs, Excessive Fatigue, Illusion, Daha (Excessive heat in the body), Mental shocks, Personal calamities, and Accidents causing temporary or lasting wounds.
Rahu Heart diseases such as an attack, Shotha (Inflammation), Kushtha (Leprosy), illusions, hallucinations, disease due to poisoning, excessive hurt, and wounds.
Ketu Unknown mysterious diseases, cannot be easily found by doctors.

Types of Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber) – As per Ayurveda

स्थानिक कारणों से तृणकांत के कई भेद होते हैं। यथा-

  • निर्मल यह जल के समान श्वेत एवं पारदर्शक है। किन्तु पाण्डुवर्ण भी होता है।
  • स्नेहीय हवा के बुद्बुदों के कारण इसमें कुछ गदलापन आ जाता है। आकृति एवं रंग में हंस की वसा जैसा दिखाई पड़ता है।
  • वर्ण संकर इसमें  हवा के बहुत छोटे बुदबुदे होते हैं। यह मेघायित होता है।
  • अस्थिमय ये हाथी दांत  या सूखी लकड़ी जैसा दिखाई पड़ता है। इसमें अच्छी चमक होती है।  इसमें अधिक  मात्रा में हवा के बहुत सूक्ष्म छिद्र होते हैं।
  • झागदार तृण मणि ये खटिका के समान श्वेत रंग  का  होता है।  ये चमकहीन  एवं पारदर्शक होता है। 

There are many varieties of Trinakanta. Such as:-

  • Nirmal Trinkaant- It is white and transparent like water. But there is also Panduvarna.
  • Snehiya Trinkaant – Due to air bubbles, it becomes somewhat turbid. It looks like swan fat in shape and colour.
  • Varna Shankar (hybrid) – It contains very small air bubbles. It becomes cloudy.
  • Asthimya (Bony) – It looks like ivory or dry wood. It has a good shine. It contains a large amount of very tiny holes in the air.
  • Jhaagdaar (Foamy) Trina Mani – It is white in colour like Khatika. It is lustreless and transparent.

Types of Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber)

Different types of Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber) are as follows:

Succinite (Baltic Amber / Baltic Trinkant): Succinite, which is commonly known as Baltic Amber, is one of the most well-known Trinkanta. The origin of the Baltic amber is from the Baltic region, particularly from countries such as Latvia, Lithuania, and Estonia. Baltic Amber/ Baltic Trinkant is renowned for its rich colors, which range from red, and yellow to orange, and even brown. The Baltic Trinkant often contains fossil inclusions such as insects (Keet), plant matter, and occasionally small vertebrates.

Burmite (Burmese Amber / Burmese Trinkant): The type of Trinkant that originates from Myanmar (formerly Burma) is known as Burmite Trinkant (Amber). Dating back to the Cretaceous period, the most valuable and oldest type of Amber/ Trikant is Burmite. The Trinkant/ amber often contains a wide range of fossil inclusions and is deep brown to red in color and includes insects, spiders, and even feathers from ancient birds.

Dominican Amber: The Trinkant/ Amber that is sourced from the Dominican Republic in the Caribbean is known as Dominican Amber. This variety of Trinkant exhibits a wide range of colors from pale yellow to deep red and is famous for its transparency and clarity. This type of amber has insect inclusion and is famous among collectors for its well-preserved fossils.

Sicilian Amber: The amber / Trinkant that is found in Italy, Sicily, and is known for its brown color and deep red color is known as Sicilian amber/ Trinkant. This type of Trinkant is related to the Mediterranean region fossilized tree resin which contain insect inclusions, and are less common as compared to other types of Trinkant / amber.

Mexican Amber: The variety of Trinkant/ Amber that is primarily found in the Chiapas region of southern Mexico is known as Mexican amber. Mexican Amber contains insect inclusion and also exhibits a wide range of colors, like orange, yellow, and red. This type of Trinkant is famous for its unique patterns and colors, which make it famous among gemologists and jewelry makers.

Lebanese Amber: The variety of Trinkant that has a deep brown to red color and the amber that is sourced from Lebanon is known as Lebanese Amber. It is relatively rare compared to other types of Trinkant and may contain fossil inclusions such as plant matter and various insects.

Synonyms of Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber)

Trinkanta, Trinkanta Mani, Trin Grahi are synonyms of the Amber in classics.

Names of Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber) in Different Languages

  • Trinkanta, Trinkanta Mani, Trin Grahi (Sanskrit)
  • Trinkanta, Kaharwa (Hindi)
  • Kahruba (Pharsi)
  • Amber (English)
  • Succinum (Latin)

Formation of the Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber)

Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber) is formed through a complex natural process over millions of years and is also known as fossilized tree resin. The formation of Trinkant typically involves the below-mentioned steps:

Resin Production: Raal (Resin) is a sticky substance produced by certain Vriksh (trees), primarily conifers. When a tree is undergoing stress and injured, it secretes Raal (resin) as a defense mechanism to seal the Vran (wound) and protect itself from pathogens and insects (Keet).

Exudation: The Raal (resin) that formed Trinkant (amber) flows down the tree trunk and upon exposure to air solidifies and formed droplets or layers on the bark. These Raal (resin) droplets may trap Keet (insects), plant matter, or other debris, which become encapsulated within the resin.

Burial: Through geological processes like volcanic activity or erosion, over time, the resin-coated tree bark may fall to the forest floor and become buried by sediment, such as mud or sand.

Pressure and Heat: By the process known as diagenesis, the resin becomes buried deeper in the Earth’s crust and due to the combination of pressure and heat over millions of years gradually transforms from resin to amber. The resin that forms amber/ Trinkant undergoes polymerization, where its molecular structure is altered, leading to the hardening and fossilization of the resin into Trinkant (amber).

Extraction: After millions of years, geological processes, such as erosion or excavation, may expose the buried Trinkant deposits. These deposits are often found in sedimentary rock formations or along coastlines where they wash ashore.

Formation of Trinkant/ Amber: The Trinkant/ amber undergoes further weathering and erosion, eventually becoming accessible for extraction by humans or natural processes.

 Reference of Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber)

Ayurvedic Books on Allergies and Child Health

History of Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber) 

The word Amber originally referred to a solid waxy substance derived from the sperm whale (now called ambergris). The sense was extended to fossil resin circa 1400, and this became the main sense, as the use of ambergris waned. The two substances were confused, because they both were found washed up on beaches. Ambergris is less dense than water and floats, whereas amber is less dense than stone, but too dense to float. The word amber was brought to Europe by the Crusaders. In French ambre gris (light grey, amber), became used for ambergris, while ambre jaune (yellow amber), denoted the fossil resin we now call Amber.

प्राचीन आयुर्वेदीय ग्रंथो अथवा निघण्टु ग्रंथो में इसका उल्लेख नहीं मिलता है। २०वीं शताब्दी के रसामृत ग्रन्थ एवं यूनानी  वैद्यक ग्रंथो में इसका वर्णन मिलता है। तृणकांत  शब्द मूल रूप से शुक्राणु व्हेल (जिसे अब एम्बरग्रीस कहा जाता है) से प्राप्त एक ठोस मोमी पदार्थ को संदर्भित करता है। लगभग 1400 में इस भावना को जीवाश्म राल तक विस्तारित किया गया था, और एम्बरग्रीस का उपयोग कम होने के कारण यह मुख्य भावना बन गया। दोनों पदार्थ भ्रमित थे, क्योंकि वे दोनों समुद्र तटों पर बहे हुए पाए गए थे। एम्बर- ग्रीस पानी से कम घना होता है और तैरता है, जबकि एम्बर पत्थर से कम घना होता है, लेकिन तैरने के लिए बहुत घना होता है। एम्बर शब्द क्रूसेडर्स द्वारा यूरोप में लाया गया था। फ़्रेंच में एम्ब्रे ग्रिस (हल्का भूरा एम्बर), एम्बर्गिस के लिए उपयोग किया जाने लगा, जबकि एम्ब्रे जौन (पीला एम्बर), जीवाश्म राल को दर्शाता है जिसे अब हम एम्बर कहते हैं।

Characteristics of Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber)

This is a resinous substance exudated from rocks, solidified into reddish semi-translucent and semitransparent stones, and is used as a minor gemstone. This is used by Unani physicians for medicinal purposes and contains succinic acid. The chemical formula is C10 H16 O4, Hardness- 2.5, Specific gravity- 1.08. This has a smooth feel but is stony hard, and can be cut with a knife. Melts at about 300°C. Burns on direct exposure to flames. This resinous stone attracts grass by rubbing against any cloth. It also smells like lemongrass during that time. Since this attracts the dry grass, it is named “Kah-ruba ” in the Pharsi language (Kah-dry grass, Ruba that attracts). Trinkanta is the Sanskrit version coined by the Ayurvedic Acharya which has the same meaning- Trina means grass; Kanta means which attracts. The refractive index of Trinkaant/ Trinkaantmani/ Kaharwa/ Tringrahi/ Succinum (Amber) is 1.54- 1.55.

यह चट्टानों से निकलने वाला एक रालयुक्त पदार्थ है, जो जम कर लाल रंग के अर्धपारभासी और अर्धपारदर्शी पत्थरों में बदल जाता है, जिसका उपयोग लघु रत्न के रूप में किया जाता है। इसका उपयोग यूनानी चिकित्सकों द्वारा औषधीय प्रयोजनों के लिए किया जाता है, इसमें स्यूसिनिक एसिड होता है। रासायनिक सूत्र, कठोरता- 2.5, विशिष्ट गुरुत्व- 1.08 है। यह मुलायम लगता है लेकिन पथरीला सख्त होता है, इसे चाकू से काटा जा सकता है। लगभग 300°C पर पिघलता है। आग की लपटों के सीधे संपर्क में आने पर जल जाता है। यह रालयुक्त पत्थर किसी भी कपड़े से रगड़कर घास को आकर्षित करता है। उस दौरान इसमें लेमनग्रास जैसी गंध भी आती है। चूँकि यह सूखी घास को आकर्षित करती है, इसलिए इसे फ़ारसी भाषा में “कह-रूबा” (कह-सूखी घास, रूबा वह जो आकर्षित करती है) नाम दिया गया है। त्रिनकांता आयुर्वेदिक आचार्य द्वारा गढ़ा गया संस्कृत संस्करण है जिसका एक ही अर्थ है- त्रिन का अर्थ है घास; कांता का अर्थ है जो आकर्षित करता है। त्रिनकांत/ त्रिनकांतमणि/ केहरूबा/ त्रिनग्राही/ सक्सिनम (एम्बर) का अपवर्तनांक 1.54- 1.55 है। तृणकान्त श्वेत-पाण्डु एवं पीताभरक्त वर्ण में पाया जाता है।इसका रासयनिक संगठन बड़ा ही जटिल है। इसका सूत्र C40 H64 O4   है। इसमें हाइड्रोजन सल्फाइड थोड़ी मात्रा में हमेशा पाया जाता है। तृणमंणि को १७० डिग्री  से २०० डिग्री सेल्सियस ताप पर गरम करते ही नर्म पड़ जाता है तब इसे दबाया जा सकता है। इस तरह से निर्मित तृणमणि का संपीडित या ऐस्ब्रोइड तृणमणि कहते हैं। २८० डिग्री से ३७५ डिग्री सेल्सियस ताप पर तृणकान्त पिघल जाता है और इसका विघटन होने लगता है, उस समय इसमें सुगन्धित  एवं सफेद धुँआं निकलती है। दियासलाई की लौ में तृणमणि आग पकड़ लेती है और जलने लगती है। इसे नाखून से नहीं काटा जा सकता किन्तु चाक़ू से अवश्य ही कट जाता है। इसका आपेक्षिक घनत्व १.1 है तथा काठिन्य 2.5 है। इसे ऊनी, रेशमी तता सूती कपड़ों पर रगने से विद्युत्‌-शक्ति उत्पन्न होती है उस समय कहरुबा हल्का तृण, पत्ता आदि को दूर से ही अपनी ओर खीचता है तथा इस से निम्बू की गन्ध निकलती है। इसका रंग  हल्का पीला या लाली लिए पीला होता है।    

Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber) Aayu (Lifespan of Amber)

Reference: Rasa Jala Niddhi. 3/ 4, Ratna Dhatu Vigyana

न जरां यान्ति रत्नानि मौक्तिकं विद्रुमं बिना।

Though the gemstones of mineral origin are eternal, the Exception is Mukta (pearl) has a limited lifespan, and also Vidruma- coral. After a few years, it grows old and eventually loses its character, but other gemstones are eternal, but they also need to be maintained and revitalization of them is necessary to get maximum benefits.

आयु- कुछ समय पश्चात्‌ काल प्रभाव से प्रवाल, मुक्ता खराब हो जाते है। किन्तु अन्य रत्नों पर काल का प्रभाव नहीं होता है।

Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber) Aayu after Dharana (Lifespan of Amber after Assumption)

It is believed by scholars that the following gemstones have effectiveness Diamond life span is 10 years, Ruby/ Manik’s 12 years, Yellow Sapphire/ Pukhraj’s lifespan is 15 years, Blue Sapphire/ Neelam’s life span is 15 years, Emerald/ Panna’s life is 12 years, Coral, Hessonite Garnet and Cat’s Eye’s lifespan is 3 to 5 years, Natural Pearl life span is 12 years. 

All the other Uparatnas and other semi-precious alternate gemstones are said to have a lifespan of 3 years.

Over some time, when gemstones i.e. precious and semi-precious stones are worn these gems start to get scratches on their surface, and even start losing their high polishing due to which sun rays stop passing through the gems (Ratna) When these precious gems are wear for a long period a greasy layer starts to deposit on their surface which is probably a mixture of lubricants, oils and other materials that a wearer come in contact with it. As the deposition starts to get thicker with time, it even blocks the rays (different wavelengths) that these stones receive from the planets to give effect. Although gemstones are forever yes, their effectiveness for astrological purposes falls and therefore proper and regular maintenance is important.

Therefore, we can consider the life span of semi-precious stone Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber) to be 3 years.

Appearance of Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber)

Amber occurs in a range of different colors. As well as the usual yellow-orange-brown that is associated with the color “amber”, amber itself can range from a whitish color through a pale lemon yellow to brown and almost black, Other more uncommon colors include red, amber (sometimes known as cherry amber), green, amber, and even blue, amber, which is rare and highly sought after. Much of the most highly prized amber is transparent, in contrast to the very common cloudy amber and opaque amber. Opaque amber contains numerous minute bubbles. This kind of amber is known as “bony amber.” Although all Dominican amber is fluorescent, the rarest Dominican amber is blue, amber. It turns blue in natural sunlight and any other partially or wholly ultraviolet light source. In long-wave UV light it has a very strong reflection, almost white. Only about 100 kg is found per year, which makes it valuable and expensive.

Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber) Used for Different Zodiac Signs (Rashi)

In Jyotish Shastra wearing Trinkant, offers various benefits based on individual characteristics and personality traits associated with each Rashi Phala or zodiac sign. Below are the benefits of Trinkant to the individuals of different zodiac signs:

Aries: The individuals with Mesha Rashu are known for their energy and courage and when such individuals wear or use Trinkant (Amber) it offers or increases the creativity, and self-expression, of the individual.

Virgo: The individual with kanya Rashi is known for their attention to detail, and analytical skills and when the individual with Knaya Rashi is Trinkant, it promotes mental clarity, organization, and practicality.

Scorpio: The individuals with Vrischika Rashi are known for their determination and passion and when such individuals wear Trinkant, it provides emotional stability, helping them transform challenges into opportunities for growth.

Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber) Stone Association with Shad Chakra

Trinkant Upratna / semi-precious gemstone is associated with the Sacral Chakra or Swadhisthana Chakra and is believed to have properties that align with this energy center located 2 inches below the navel. The Sacral Chakra governs the functioning of the urinary system, sexual organs, lower digestive system, and lower back. When this chakra is blocked, it can manifest in physical ailments such as lower back pain, muscle pain, and PCOS, and contribute to fertility issues and conditions like Endometriosis. Emotionally, an imbalanced Sacral Chakra can lead to instability and depression. However, wearing amber is believed to aid in cleansing and balancing the Sacral Chakra. It is said to promote pleasure and help individuals become more comfortable with their sexuality. By facilitating the healing of disorders related to the reproductive system and muscles, amber enables the wearer to experience a sense of trust, courage, and creativity when the Sacral Chakra is in balance.

तृणकांत उपरत्न त्रिक चक्र या स्वाधिष्ठान चक्र से जुड़ा हुआ है, ऐसा माना जाता है कि इसमें ऐसे गुण होते हैं जो नाभि से 2 इंच नीचे स्थित इस ऊर्जा केंद्र के साथ संरेखित होते हैं। त्रिक चक्र मूत्र प्रणाली, यौन अंगों, निचले पाचन तंत्र और पीठ के निचले हिस्से के कामकाज को नियंत्रित करता है। जब यह चक्र अवरुद्ध हो जाता है, तो यह पीठ के निचले हिस्से में दर्द, मांसपेशियों में दर्द, पीसीओएस जैसी शारीरिक बीमारियों में प्रकट हो सकता है और प्रजनन संबंधी समस्याओं और एंडोमेट्रियोसिस जैसी स्थितियों में योगदान कर सकता है।भावनात्मक रूप से, असंतुलित त्रिक चक्र अस्थिरता और अवसाद का कारण बन सकता है। हालाँकि, माना जाता है कि तृणकांत  पहनने से त्रिक चक्र को साफ करने और संतुलित करने में मदद मिलती है। ऐसा कहा जाता है कि यह आनंद को बढ़ावा देता है और व्यक्तियों को उनकी कामुकता के साथ अधिक सहज होने में मदद करता है। प्रजनन प्रणाली और मांसपेशियों से संबंधित विकारों के उपचार की सुविधा प्रदान करके, एम्बर पहनने वाले को त्रिक चक्र के संतुलन में होने पर विश्वास, साहस और रचनात्मकता की भावना का अनुभव करने में सक्षम बनाता है।

Distribution and Mining of Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber)

Amber is globally distributed mainly in rocks of Cretaceous age or younger. Historically, the coast around Kunigsberg in Prussia was the world’s leading source of amber. About 90% of the world’s extractable amber is still located in Kaliningrad oblast of Russia on the Baltic Sea. This is available in Italy, Rumaina and Myanmar.

तृणकांत  विश्व स्तर पर मुख्य रूप से क्रेटेशियस युग या उससे कम उम्र की चट्टानों में वितरित किया जाता है। ऐतिहासिक रूप से, प्रशिया में कुनिग्सबर्ग के आसपास का तट एम्बर का दुनिया का प्रमुख स्रोत था। दुनिया का लगभग 90% निष्कर्षण योग्य तृणकांत  अभी भी बाल्टिक सागर पर रूस के कलिनिनग्राद क्षेत्र में स्थित है। यह इटली, रुमैना और म्यांमार में उपलब्ध है। भारत में तरांवकोर, कच्छ  और बाल्टिक समुद्र, निकोबार   की जमीन खोकर बड़ी मात्रा में केहरुबा निकला जाता है।  

Purification of Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber)

Its purification is not in practice and has no textual references. Instead, it is used in the form of Pishti for internal administration.

इसमें  कुछ  विषाक्ता नहीं है, अत: तृणकांत को शोधन  की आवश्यकता  नहीं है। क्यूंकि ये राल जातीय पदार्थ है  अत: इसका मारण नहीं करना चाहिए।  मारण से इसके सभी गन एवं सभी तत्व नष्ट हो जाते है।  अत: मारण कभी नहीं करना चाहिए।

Incineration (Maaran) of Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber)

Its incineration is not in practice and has no textual references. Instead, it is used in the form of Pishti for internal administration.

इसमें  कुछ  विषाक्ता नहीं है, अत: तृणकांत को शोधन  की आवश्यकता  नहीं है। क्यूंकि ये राल जातीय पदार्थ है  अत: इसका मारण नहीं करना चाहिए।  मारण से इसके सभी गन एवं सभी तत्व नष्ट हो जाते है।  अत: मारण कभी नहीं करना चाहिए।

Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber) Pishti

The Suddha Trinkant is taken in a clean Khalva Yantra. It is added with the required quantity of Gulaba Jala (rose water) and triturated thoroughly for three days to obtain pale white colored Trinkant Pishti.

तृणकांत को सीमाक पत्थर के खरल में चूर्ण क्र गुलाब जल, केवड़ा जल, अर्कवेदमिश्म में से किसे एक के साथ २- ३ दिनों तक भावना दे देकर पीसते रहने से अत्यंत सूक्षम  एवं  पाण्डु  वर्ण  की पिष्टी बनती है।  सूखा  कर  शीशे  में रख  लें ।

Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber) Properties: (Pishti)

Trinkaant Pishti possesses Ruksha and Sheeta Guna and Sheeta Virya. It mitigates vitiated Pitta Dosha. When administered in suitable dosage along with appropriate adjuvant, it acts as Hridya (Cardio tonic), Indriya Prasadana, Grahi and Rakta Stambhaka. 

It is indicated in Raktapitta, Rakta Arsha, Rakta Stheevana, and Hridya Dourbalya. It has been claimed that by wearing the garland of the mineral gemstone, the chances of the abortion will be minimized.

तृणकांत पिष्टी में रूक्ष और शीत गुण और शीत वीर्य है। यह ख़राब पित्त दोष को शांत करता है। जब उपयुक्त सहायक के साथ उपयुक्त खुराक में दिया जाता है, तो यह हृदय (कार्डियो टॉनिक), इंद्रिय प्रसादन, ग्राही और रक्त स्तंभक के रूप में कार्य करता है।

इसका प्रयोग  रक्तपित्त, रक्त अर्श, रक्तष्ठीवन  और हृदय दोर्बल्य में होता  है। दावा किया गया है कि खनिज रत्न की माला पहनने से गर्भपात की संभावना कम हो जाएगी।

Uses of Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber)

Amber has been used since antiquity in the manufacture of jewelry and ornaments, and also in folk medicine. Amber also forms the flavoring for akvavit liquor. Amber has been used as an ingredient in perfumes.

Jewelry: Amber has been used since the Stone Age, from 13,000 years ago. Amber ornaments have been found in Mycenaean tombs and elsewhere across Europe. To this day it is used in the manufacture of smoking and glassblowing mouthpieces. Amber’s place in culture and tradition lends it a tourism value. Palanga Amber Museum is dedicated to the mineral.

Historic medicinal uses: Amber has long been used in folk medicine for its purported healing properties. Amber and extracts were used from the time of Hippocrates in ancient Greece for a wide variety of treatments through the Middle Ages and up until the early twentieth century.

एम्बर का उपयोग प्राचीन काल से आभूषणों और गहनों के निर्माण के साथ-साथ लोक चिकित्सा में भी किया जाता रहा है। एम्बर एक्वविट| शराब का स्वाद भी बनाता है। एम्बर का उपयोग इत्र में एक घटक के रूप में किया गया है  एम्बर का उपयोग पाषाण युग से, 13,000 वर्ष पूर्व से किया जाता रहा है। एम्बर आभूषण माइसेनियन कब्रों और पूरे यूरोप में अन्य जगहों पर पाए गए हैं। आज तक इसका उपयोग धूम्रपान और कांच उड़ाने वाले माउथपीस के निर्माण में किया जाता है। संस्कृति और परंपरा में एम्बर का स्थान इसे पर्यटन का महत्व देता है। पलांगा एम्बर संग्रहालय खनिज को समर्पित है। एम्बर का उपयोग लोक चिकित्सा में इसके कथित उपचार गुणों के लिए लंबे समय से किया जाता रहा है। एम्बर और अर्क का उपयोग प्राचीन ग्रीस में हिप्पोक्रेट्स के समय से मध्य युग और बीसवीं शताब्दी की शुरुआत तक विभिन्न प्रकार के उपचारों के लिए किया जाता था। 

Dosage and Usage of Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber)

1 to 2 Masha (1- 2 grams) is the general dosage of the Trinkant Pishti. Some author mentioned dosage of Trinkant Pishti as 4- 8 Ratti or some author mentioned it 2 to 4 Rattti i.e. 250- 500 grams. However, the dosage of the Trinkant Pishti has to be finalized after thorough consideration of all the relevant factors that affect the dosage like Atura Bala, Vyadhi Bala, etc.    

Anupana (Adjuvant / Vehicle) for Use of Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber)

Honey, clarified butter, Crystal sugar (Mishri), cream or  any other suitable medicine.

अनुपान- मधु, घृत, नवनीत आदि |

Important Formulation of Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber)

  • Trinkant pishti
  • Jwahar Mohra Vati
  • Hrdwepanadi Churna
  • Brahmi Vati
  • Kehruva Pishti
  • Yaakuti
  • Arshoghn Vati

Recent Research on Trinkant / Trinkant Mani / Kaharwa / Tringrahi / Succinum (Amber)

  • Alekseev, Pavel. (2018). The revision of Gymnosperm species from Eocene Baltic Amber. 103.
  • ROTTLANDER, R. (2007). On the formation of amber from Pinus resin. Archaeometry. 12. 35 – 52. 10. 1111/ j. 1475- 4754. 1970. tb00004. x.
  • Ragazzi, Eugenio. (2016). Amber, a Stone of Sun for Ancient Medicines. Acta medico- historica Rigensia. 10. 208- 234. 10. 25143/ amhr. 2016. X. 11.
  • Lydzba- Kopczynska, Barbara & Gediga, Bogusław & Chojcan, Jan & Sachanbinski, Michal. (2012). Provenance investigations of amber jewelry excavated in Lower Silesia (Poland) and dated back to the Early Iron Age. Journal of Raman Spectroscopy. 43. 1839- 1844. 10. 1002/ jrs. 4187.
  • Ostreika, Armantas & Pivoras, Marius & Misevicius, Alfonsas & Skersys, Tomas & Paulauskas, Linas. (2020). Classification of Amber Gemstone Objects by Shape. 10. 20944/ preprints- 202008. 0336. v1.
  • Sinkevicius, Saulius & Lipnickas, Arunas & Rimkus, Kestas. (2017). Amber Gemstones Sorting by Colour. Elektronika ir Elektrotechnika. 23. 10. 5755/ j01. eie. 23. 2. 17993.
  • Duffin, Christopher. (2015). The medicinal use of unprocessed amber. Poster Abstract. “Amber in the History of Medicine”, International Conference 14th- 17th September 2015, Amber Museum, Kaliningrad, Russia. Esteemed as a therapeutic stone since at least classical times, amber has an extraordinarily diverse range of medicinal applications, ranging from prophylactic amulets to some very inventive means of delivery (e.g. via poached eggs and medicinal toasts). This poster introduces the wide variety of uses of unprocessed amber-unprocessed other than being worked into particular shapes for amuletic pendants or jewelry or reduced to a powder to aid combination into various medicinal pastes, pills, and confections. In addition to giving magical protection for the person and their belongings against the influences of spirits and the Evil Eye, the wearing of amber amulets has often been credited with prophylactic and medicinal powers. Pliny (circa73 AD) indicated that contemporary women from the Lombardy Alps wore necklaces and collars of amber beads to prevent tonsillitis, throat and pharyngeal diseases (including goiter), as well as curing strangury fevers and stomatological disorders (Historia Naturalis, Book 37, cap.  1’2). Felice Passera (1610- 1702) advised wearing amber in order to prevent catching the plague, whilst Johann Schrdder (1600-1664) believed it cured ‘defluxions of the eyes’. In Scotland olammer’s beads were kept as charms against blindness, to clear foreign bodies from the conjunctiva, and to cure sore eyes and sprained limbs. One particular amber bead was used to cure sick children and diseased livestock, water in which the bead had been dipped three times was drunk by the patient.
  • Li, Hui & Wang, Xuan & Zhu, Yong. (2015). Identification Characteristics for Amber and its Imitation. 10. 2991/ icimm- 15. 2015. 91.
  • Panczak, Jan & Kosakowski, Paweł & Zakrzewski, Adam. (2023). Biomarkers in fossil resins and their palaeoecological significance. Earth-Science Reviews. 242. 10. 1016/ j. earscirev. 2023. 104455.
  • Wolfe, Alexander & Tappert, Ralf & Muehlenbachs, Karlis & Boudreau, Marc & McKellar, Ryan & Basinger, James & Garrett, Amber. (2009). A new proposal concerning the botanical origin of Baltic amber. Proceedings. Biological sciences / The Royal Society. 276. 3403- 12. 10. 1098/ rspb. 2009. 0806.
  • Neacsu, Antonela. (2010). Amber in Romania. 10. 1007/ 978- 3- 642-01577- 9_ 8.
  • Murillo-Barroso, Mercedes & Martinon-Torres, Marcos. (2012). Amber Sources and Trade in the Prehistory of the Iberian Peninsula. European Journal of Archaeology. 15. 187- 216. 10. 1179/ 1461957112Y. 00000. 00009.
  • Krupskaya, T. & Yelahina, N. & Borisenko, N. & Turov, V. & Jovaisas, P. & Bieliauskienė, Rita. (2017). The state of water is adsorbed by the surface of amber particles and its composite system with nano-silica, according to NMR spectroscopy. Surface. 9 (24). 256- 267. 10. 15407/ Surface. 2017. 09. 256.
  • Henderickx, Hans & Tafforeau, Paul & Soriano, Carmen. (2012). Phase-contrast synchrotron microtomography reveals the morphology of a partially visible new Pseudogarypus in Baltic amber (Pseudoscorpiones: Pseudogarypidae). Palaeontologia Electronica. 15. 10. 26879/ 310.
  • Grigelis, Algimantas. (2006). Geological story of amber deposition in Semba thirty-five MA ago. In: Fieldtrip Guidebook, 2006. 10. 13140/ 2. 1. 3965. 7764.
  • Gaidukovs, Sergejs & Lyashenko, Inga & Rombovska, Julija & Gaidukova, Gerda. (2015). Application of amber filler for production of novel polyamide composite fiber. Textile Research Journal. 86. 10. 1177/ – 0040517515621130.
  • Li, Xingping & Wang, Yamei & Shi, Guanghai & Lu, Ren & Li, Yan. (2022). Evaluation of Natural Ageing Responses on Burmese Amber Durability by FTIR Spectroscopy with PLSR and ANN Models. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 285. 121936. 10. 1016/ j. saa. 2022. 121936. Amber aging is an inevitable process, which is very important in precious organic gemstone relics protection. In order to explore the mechanism of amber ageing and estimate the durability of Burmese amber, this research investigates the changing spectral features of Burmese ageing amber via Fourier Transform Infrared Spectroscopy (FTIR) and solid ¹³C Nuclear Magnetic Resonance spectroscopy (NMR) and develops the regression models for its micro-hardness by micro-FTIR spectra. The Partial Least Squares Regression (PLSR) and Artificial Neural Networks (ANN) methods as well as the Competitive Adaptive Reweighted Sampling (CARS) algorithm for wavelength variables selection have been applied to predict and assess the Vickers hardness of amber samples with different ageing degrees. As a result, the FTIR and the solid ¹³C NMR spectra reveal that the contents of C= O groups (of esters) increase substantially, and which of the other oxygenic groups (C=O (of acids), C- O- C, C- O- C= C) increase modestly in amber aging. When comparing with the results of four different models (PLSR, ANN, CARS- PLSR, and CARS- ANN), the CARS-PLSR model obtained the optimal results as follows: the squared correlation coefficient of calibration(R²cal) is 0.9230 and the root mean square error of calibration (RMSEC) is 1.2977 HV; the squared correlation coefficient of prediction (R²pre) is 0.7762 and the root mean square error of prediction (RMSEP) is 2.2208 HV. The overall results sufficiently demonstrate that the FTIR spectroscopy technique coupled with appropriate chemometrics methods are very promising tools to estimate and predict the hardness property of Burmese aging amber.
  • Ostreika, Armantas & Pivoras, Marius & Misevicius, Alfonsas & Skersys, Tomas & Paulauskas, Linas. (2021). Classification of Objects by Shape Applied to Amber Gemstone Classification. Applied Sciences. 11. 1024. 10. 3390/ app- 11031024.
  • Sinkevicius, Saulius & Lipnickas, Arunas & Rimkus, Kestas. (2013). Multiclass amber gemstones classification with various segmentation and committee strategies. 304- 308. 10.1109/ IDAACS. 2013. 6662694.
  • Legalov, A. (2016). Two new genera and four new species of fossil weevils (Coleoptera: Curculionoidea) in Baltic amber. Entomologica Fennica. 27. 57- 69. 10. 33338/ ef. 59124.
  • Kaminska, L.ubomira. (2008). Amber – rare raw material from Palaeolithic sites. Sprawozdania archeologiczne. 61. 147- 174.
  • Ravindranv, R. & Sekar, Sathiya & Devi, A.J. & Chidambaram, Saravana Babu & Rajkumar, J. (2015). Studies on the effect of Ambrex (an amber-based herbal formulation) on apoptotic gene expression and energy-producing mitochondrial enzymes in isoproterenol-induced myocardial infarction in rats. Journal of Pure and Applied Microbiology. 9. 803- 808. Deficiency in energy substrates or stress disrupts the Krebs cycle, leading to a wide range of metabolic disturbances. In the present study an effort was made to unravel the underlying possible mechanism behind the cardio-protective effect of a succinate-based herbal formulation Ambrex. Male Sprague Dawley was pre-treated with Ambrex (40 mg/ kg b. wt./ day, p. o) for 21 days. On 20- 1 Day, isoproterenol hydrochloride at 85 mg/ kg by wt × 2 doses (24h apart) was injected subcutaneously to induce necrosis. Heart tissue mitochondria were isolated for the estimation of mitochondrial enzymes and gene expression of p53, Bax, Bcl2, and Caspase 3 were measured by RT PCR. The characterization of Ambrex was done by FTIR analysis. Isoproterenol-induced myocardial infarcted rats showed a significant (p < 0.001) increase in the expression levels of apoptotic genes, p53, Bax, and Caspase 3 and a decrease in the antiapoptotic gene Bcl2 (p < 0.001). Ambrex pretreatment downregulated the apoptotic gene expression. Moreover, the TCA cycle enzymes which were found to decrease in the ISPH induced rats showed enhanced activity in Ambrex pretreated rats. The FTIR analysis showed a sharp absorption peak at 1600-1760 cm-1. assigned to C=0 stretching vibration in carbonyl compounds characterized by the presence of a high content of terpenoids and flavonoids. Data from the present study suggest that Ambrex prevents the development of cardiotoxicity by a pathway partially related by its ability to increase expression of anti-apoptotic genes and to decrease apoptosis in cardiac tissues with the consequent modulation of the energy-producing mitochondrial enzymes, providing insight into the role of succinic acid and other bioactive constituents in the formulation.
  • Seyfullah, Leyla & Beimforde, Christina & Dal Corso, Jacopo & Perrichot, Vincent & Rikkinen, Jouko & Schmidt, Alexander. (2018). Production and preservation of resins – past and present. Biological Reviews. 93. 1684-1714. 10.1111/ brv.12414.
  • Sadowski, Eva- Maria & Schmidt, Alexander & Kunzmann, Lutz & Gröhn, Carsten & Seyfullah, Leyla. (2016). Sciadopitys cladodes from Eocene Baltic amber. Botanical Journal of the Linnean Society. 180. n/a- n/a. 10. 1111/ boj. 12365.
  • Wagner-Wysiecka, Ewa. (2023). Succinite, Baltic Amber: A Chemical Masterpiece of Nature. 25. 69. 10.15964/ j. cnki. 027jgg. 2023. 04. 007.
  • Korga, Sylwester & Dziedzic, Krzysztof & Skulimowski, Stanisław & Gnapowski, S. (2023). Optimising Amber Processing Using 3D Scanning: New Perspectives in Cultural Heritage. Applied Sciences. 13. 12973. 10. 3390/ app- 132412973.
  • Stout, E. & Beck, C. & Anderson, K. (2000). Identification of rumanite (Romania amber) as thermally altered succinite (Baltic amber). Physics and Chemistry of Minerals. 27. 10. 1007/ s002690- 000111.
  • Szwedo, Jacek. (2009). The traps of the ‘amber trap’. Amber-trapped insects trap scientists with enigmas.
  • Seth, Mukesh Kumar. (2003). Trees and Their Economic Importance. The Botanical. Rev. 69. 321- 376. 10. 1663/ 0006-8101 (2004) 069 [0321: TATE] 2. 0. CO; 2.
  • van der Werf, Inez & Aresta, Antonella & Badea, Georgiana & Radu, Gabriel & Palmisano, Francesco & Sabbatini, Luigia. (2014). A quasi-non-destructive approach for amber geological provenance assessment based on headspace solid-phase microextraction gas chromatography-mass spectrometry. Talanta. 119C. 435- 439. 10. 1016/ j. talanta. 2013. 11. 051.
  • Singh, Hukam. (2020). Paleoenvironmental and taphonomy biases in palynological assemblages preserved in amber versus sediments from the Umarsar Lignite, Kutch Basin, Gujarat, India. Historical Biology. 33. 1- 11. 10. 1080/ 08912963. 2020. 1791105.
  • Dunlop, Jason. (2006). Baltic amber harvestman types (Arachnida: Opiliones: Eupnoi and Dyspnoi). Fossil Record. 9. 10. 5194/ fr- 9- 167-2006.
  • Legalov, A. & Poinar, Jr. (2023). Eocene Araucariaceae in Europe: additional evidence from a new Baltic amber species of the genus Oxycraspedus Kuschel, 1955 (Coleoptera: Belidae). Historical Biology. 1- 10. 10. 1080/ 08912963. 2023. 2237984.
  • Tay, Thyesun & Z. X. Shen, & S. L. Yee, (1998). On the identification of amber and its imitations using Raman spectroscopy – preliminary results. Australian Gemmologist. 20. 114- 123.
  • Le, Nang & Hieu, Pham & Phat, Lam & Tien, Pham & Man, Ho & Hang, Ha. (2022). Characteristics of Newly Discovered Amber from Phu Quoc, Vietnam. Gems and Gemology. 58. 184- 194. 10. 5741/ GEMS. 58. 2. 184.
  • Abduriyim, Ahmadjan & Kimura, Hideaki & Yokoyama, Yukihiro & Nakazono, Hiroyuki & Wakatsuki, Masao & Shimizu, Tadashi & Tansho, Masataka & Ohki, Shinobu. (2009). Characterization of “Green Amber” with Infrared and Nuclear Magnetic Resonance Spectroscopy. Gems & Gemology. 45. 158- 177. 10. 5741/ GEMS. 45. 3. 158.
  • Jiang, Xinran & Zhang, Zhiqing & Wang, Yamei & Kong, Fanli. (2020). Gemmological and Spectroscopic Characteristics of Different Varieties of Amber from the Hukawng Valley, Myanmar. The Journal of Gemmology. 37. 144- 162. 10. 15506/ JoG. 2020. 37. 2. 144.
  • Lin, Shu-Hong & Yang, Tsung-Ying & Huang, Kai- Yun & Chou, Yu-Shan. (2022). A New Amber Imitation: Amber-Epoxy Composite. The Journal of Gemmology. 38. 223- 224. 10.15506/ JoG. 2022. 38. 3. 223.
  • Vazquez- Bautista, G & Torres, M & Lara, F. (2024). Analysis of Mexican Amber and Natural Resins Using Fourier Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy. Journal of Physics: Conference Series. 2699. 012009. 10.1088/ 1742- 6596/ 2699/ 1/ 012009.
  • Barletta, Emma & Wandelt, Klaus. (2011). High-resolution UHV-AFM surface analysis on polymeric materials: Baltic Amber. Journal of Non-crystalline Solids – J NON-CRYST SOLIDS. 357. 1473- 1478. 10.1016/ j. jnoncrysol. 2010. 12. 039.
  • Duffin, Christopher. (2016). Amber as a component of paleontological pharmacology.
  • Thu, Kyaw. (2017). Gem Deposits of Myanmar.
  • Chillemi, Giovanni & Coletta, Andrea & Mancini, Giordano & Sanna, Nico & Desideri, Alessandro. (2010). An amber-compatible molecular mechanic’s force field for the anticancer drug topotecan. Theoretical Chemistry Accounts. 127. 293- 302. 10. 1007/ s00214- 009- 0715- 9. A molecular mechanics (MM) force field has been developed for the topotecan (TPT) molecule, an anticancer drug the only molecular target of which is the human topoisomerase I- DNA covalent complex. We proceeded according to the amber03 force field parametrization protocol, based on quantum mechanical calculations with solvent effects included by means of continuum models. An adequate description of the electronic states of TPT has been ensured by comparing calculated IR vibrational frequencies and NMR chemical shifts with experimental results. Bonded molecular parameters have been verified by comparison with abinitio normal mode vibrational analysis, while atomic charges have been fitted either using the restrained electrostatic potential fitting (RESP) or the multi-conformational RESP (MultiRESP) procedures. Particular attention has been paid to the parametrization of the dimethylamino group in ring A, for which several energy minima were found. The reliability of the force field has been checked by comparing the results obtained from a classical molecular dynamics simulation with quantum mechanics abinitio energy calculations. The development of the topotecan force field makes it possible to carry out reliable simulations of the topotecan– topoisomerase– DNA ternary complex, thus allowing the investigation of important biological questions, such as the selective resistance to topotecan caused by single residue topoisomerase I mutations.
  • Duffin, Christopher. (2015). HISTORICAL SURVEY OF THE INTERNAL USE OF UNPROCESSED AMBER POVIJESNI PREGLED PERORALNE PRIMJENE NEOBRAĐENOG JANTARA. AMHA – Acta Medico-Historica Adriatica. 13. 41- 74.
  • Al-Khalil, S.. (2020). A review on ambergris perspective and modern chemical composition and pharmacology. 10. 15413/ ajmp. 2020. 0125.
  • Nissen, Michael & Lau, Esther & Cabot, Peter & Steadman, Kathryn. (2019). Baltic amber teething necklaces: could succinic acid leaching from beads provide anti- inflammatory effects? BMC Complementary and Alternative Medicine. 19. 10.1186/ s12906- 019- 2574- 9.
  • Machet, Pauline & Lanotte, Philippe & Giraudeau, Bruno & Leperlier, Marie & Tavernier, Elsa & Maruani, Annabel. (2016). Amber necklaces: Reasons for use and awareness of risk associated with bacterial colonization. European journal of dermatology: EJD. 26. 10. 1684/ ejd. 2016. 2871.
  • Polyakova, Irina. (2016). THE JUSTIFICATION OF THE HEALING PROPERTIES OF AMBER IN THE FRAME OF NATURAL PHILOSOPHY. BACKGROUND TO THE PROBLEM.
  • Bai, Feng & Liang, Huifang & Qu, Hongting. (2019). Structural Evolution of Burmese Amber during Petrifaction Based on a Comparison of the Spectral Characteristics of Amber, Copal, and Rosin. Journal of Spectroscopy. 2019. 1- 11. 10.1155/ 2019/ 6904541.
  • Park, Jong-Seo & Lim, Yu-Jin. (2012). Change of fluorescence in ambers according to artificial aging. Analytical Science and Technology. 25. 10. 5806/ AST. 2012. 25. 3. 197.
  • Moreno, YM & Christensen, DH & Nielsen, Ole. (2000). A NIR- FT- Raman spectroscopic study of amber. Asian Journal of Spectroscopy. 4. 49- 56.
  • Masley, V.M. & Mozgovoy, Dmitry & Bilousov, K.G. & Horoshilov, V.S. & Bushanska, O.S. & Galich, N. G. (2016). METHODS OF THE IMPACT EVALUATION OF AMBER MINING BY MULTISPECTRAL SATELLITE IMAGES. Kosmicna nauka  tehnologia. 22. 26-36. 10. 15407/ knit- 2016. 06. 026.
  • Wagner- Wysiecka, Ewa & Łukasik, Natalia & Wicikowski, Leszek & Kosior, Michal. (2016). Amber vs. Copal in Mid- and Far-IR Spectra – a Useful Tools for Gemstone Characterization.
  • Pakutinskiene, I. & Kiuberis, Jonas & Bezdicka, Petr & Senvaitiene, Jurate & Kareiva, Aivaras. (2007). Analytical characterization of Baltic amber by FTIR, XRD, and SEM. Canadian Journal of Analytical Sciences and Spectroscopy. 52. 287- 294.
  • Somuah-Asante S, Sakamoto K. Stress Buffering and Longevity Effects of Amber Extract on Caenorhabditis elegans (C. elegans). Molecules. 2022 Jun 16; 27 (12): 3858. doi: 10. 3390/ molecules- 27123858. PMID: 35744983; PMCID: PMC- 9228897.
  • Cox, Catherine & Petrie, Neil & Hurley, Katrina. (2016). Infant Strangulation from an Amber Teething Necklace. CJEM. 1. 1- 4. 10.1017/ cem. 2016. 342.
  • Teodor, Eugen & Vîrgolici, Marian & Litescu, Simona Carmen & Badea, Georgiana. (2010). Non-destructive analysis of amber artefacts from prehistoric Cioclovina Hoard. JOURNAL OF ARCHAEOLOGICAL SCIENCE. 37. 2386- 2396. 10.1016/ j. jas. 2010. 04. 011.
  • Clark, Neil. (2010). Amber: Tears of the Gods.
  • Coimbra, Joao & Sousa, Sergio & Fernandes, Pedro & Rangel, Maria & Ramos, Maria. (2013). Biomembrane simulations of 12 lipid types using the general amber force field in a tensionless ensemble. Journal of biomolecular structure & dynamics. 32. 10.1080/ 07391102. 2012. 750250.
  • Singer, Graciela. (2016). Amber Exchange in the Late Bronze Age Levant in Cross-cultural Perspective. Aula Orientalism. 34. 251- 264.
  • Strieder, Anna & Ayala Aguirre, Patricia & Lotto, Matheus & Cruvinel, Agnes Fatima & Cruvinel, Thiago. (2019). Digital behavior surveillance for monitoring the interests of Google users in amber necklace in different countries. International Journal of Pediatric Dentistry. 29. 10.1111/ ipd. 12500.
  • Lambert, Joseph & Santiago-Blay, Jorge & Wu, Yuyang & Levy, Allison. (2015). Examination of amber and related materials by NMR spectroscopy. Magnetic Resonance in Chemistry. 53. 10. 1002/ mrc. 4121.
  • Hollingsworth SA, Dror RO. Molecular Dynamics Simulation for All. Neuron. 2018 Sep 19; 99 (6): 1129- 1143. doi: 10. 1016/ j. neuron. 2018. 08. 011. PMID: 30236283; PMCID: PMC- 6209097.
  • Al-Tamimi, Wijdan & Al-Saadi, Sahar & Burghal, Ahmed. (2020). Antibacterial activity and GC-MS analysis of Baltic amber against pathogenic bacteria. 611- 618. Amber is a fossil residue from an etched resin from ancient times, used as a medicinal agent to control microbial infections, due to containing chemical compounds that are detected by GC- MS analysis. Antibacterial activity was detected for both Dimethyl sulfoxide and ethanolic extracts of orange and brown, amber. The largest zones of inhibition were 19 mm and 16 mm for Dimethyl sulfoxide extract of orange and brown amber at 250 mg/ml on Staphylococcus aureus and Pseudomonas aeruginosa respectively, while the largest inhibition zones of the ethanolic extracts were 20 and 22 mm for orange and brown amber at 100 mg/ml on E. coli. The GC- MS analysis revealed a total of 35 compounds in Baltic amber. Major chemical components identified in orange and brown, amber included borneol (16.80 % and 17.60 %), Isopar acid methyl aster (17 % and 13.65 %), camphor (8.15 % and 7.04 %), 2- Fenchanol (7.44 % and 7.76 %), and m- cymene (6.24 % and 5.40 %), respectively. Orange amber contains seven monoterpenes, six sesquiterpenes, and three diterpenes, while brown amber contains seven monoterpenes, four sesquiterpenes, and one diterpene.
  • Joshi N, Ahuja MR, Rastogi GK, Dash MK. Characterization and antimicrobial study of Trinakantamani (AmberPishti. Ayu. 2020 Oct-Dec; 41 (4): 225- 234. doi: 10. 4103/ ayu. AYU_ 155_ 19. Epub 2022 Jun 3. PMID: 35813362; PMCID: PMC- 9261990.
  • Clark AT, D’Anna S, Nemati J, Barden P, Gatley I, Federici J. Evaluation of Fossil Amber Birefringence and Inclusions Using Terahertz Time-Domain Spectroscopy. Polymers (Basel). 2022 Dec 15; 14 (24): 5506. doi: 10. 3390/ polym- 14245506. PMID: 36559874; PMCID: PMC- 9780848.
  • Murillo-Barroso M, Penalver E, Bueno P, Barroso R, de Balbin R, Martinon- Torres M. Amber in prehistoric Iberia: New data and a review. PLoS One. 2018 Aug 29; 13 (8): e0202235. doi: 10. 1371/ journal. pone. 0202235. PMID: 30157208; PMCID: PMC- 6114727.
  • Lambert JB, Poinar GO Jr. Amber: the organic gemstone. Acc Chem Res. 2002 Aug; 35 (8): 628- 36. doi: 10. 1021/ ar0001970. PMID: 12186- 567.
  • Cota ALS, Silva EAD, Freitas NBBS, Bisneto JSLI, Buriti GM, Valente JQLM, Nemezio MA. Use of the amber teething necklace by the child population: risks versus benefits. Rev Paul Pediatr. 2022 May 27; 40: e2020412. doi: 10. 1590/ 1984- 0462/ 2022/ 40/ 2020412IN. PMID: 35648980; PMCID: PMC- 9150903.
  • Labandeira, Conrad. (2014). Amber. The Paleontological Society Papers. 20. 163- 216. 10. 1017/ – S108933- 260000- 2850.
  • Drąg, Karolina & Mroczkowska- Szerszen, Maja & Dumanska- Slowik, Magdalena & Grazyna, Zukowska. (2022). Identification of treated Baltic amber by FTIR and FT-Raman – A feasibility study. Spectrochemical Acta Part A: Molecular and Biomolecular Spectroscopy. 279. 121404. 10. 1016/ j. saa. 2022. 121404.
  • Lin, Shu-Hong & Yang, Tsung-Ying & Huang, Kai-Yun & Chou, Yu-Shan. (2022). Pressed amber is an imitation of “root amber”. Gems and Gemology. 58. 386- 387.
  • Sinkevicius, Saulius & Lipnickas, Arunas & Rimkus, Kestas. (2014). Automatic amber gemstone identification by color and shape visual properties. Engineering Applications of Artificial Intelligence. 37. 10. 1016/ j. engappai. 2014. 09. 011.
  • Joshi, Namrata & Dash, Manoj. (2022). Characterization and antimicrobial study of Trinakantamani (Amber) Pishti. 10. 4103/ ayu. AYU_ 155_ 19. Background: Trinakantamani Pishti (TMP) is a cardio‑tonic (Hridya), styptic (Rakta Stambhaka), astringent (Kashaya) formulation frequently used in varieties of bleeding disorders such as bloody diarrhea (Rakta- atisaara), Raktarsha (bleeding piles), and disorders of excessive menstruation (Atyartava). Still, no published data is available regarding its characterization. Aim: To generate a fingerprint for raw and processed TMP using sophisticated instrumental techniques to assess the antimicrobial activity of TMP. Materials and methods: Three samples of TMP were prepared using the standard reference method. Characterization of TMP was carried out by Fourier‑transform infrared spectroscopy (FTIR), energy dispersive X‑ray analysis (EDEX) with scanning electron microscopy, and powder X‑ray diffraction (XRD). Antibacterial activity was carried out by the well‑diffusion method. Results: Analysis by scanning electron microscope revealed maximum particle size <5 μm and <3 μm in the raw sample and TMP, respectively. Minimum particle size in TMP ranges from 1 to 2 μm and 701 nm. EDEX analysis shows carbon and oxygen as major constituents while Na, Mg, Ca, Si, Fe, and S were present in traces. XRD pattern indicates the amorphous nature of the drug, while FTIR analysis reveals the presence of functional groups such as O–H, CO2, C = O, C‑N, and N–H. Heavy metals, total microbial count, and microbial limit test were found to be under permissible limits. Anti‑microbial study against tested pathogens Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Salmonella typhimurium did not show any effect of TMP. Conclusion: The results of the EDEX study showed that Pishti samples have a small particle size i.e., 701nm than the raw i.e., 1‑ 2 μm, which may facilitate the absorption of the drug into the body. All heavy metals in the samples were within the permissible limit. Carbon, hydrogen, and oxygen are the chief elements of the drug which confirms its similarity to Amber, Since the present work is the first published literature on characterization and anti‑microbial study on TMP, the outcome can be considered as a fingerprint for the drug prepared using the mentioned reference method.
  • Ostreika, A., Pivoras, M., Misevičius, A., Skersys, T., & Paulauskas, L. (2020). Classification of Objects by Shape Applied to Amber Gemstone Classification. Applied Sciences, 11 (3), 1024. https:// doi. org/ 10. 3390/ app- 11031024
  • Refli, R., Sofyana, N. T., Haeiwa, H., Takeda, R., Okazaki, K., Sekita, M., & Sakamoto, K. (2023). Amber Extract Suppressed Mast Cell-Mediated Allergic Inflammation via the Regulation of Allergic Mediators—An In Vitro Study. Nutraceuticals, 3 (1), 75- 90. https:// doi. org/ 10. 3390/ nutraceuticals- 3010006.
  • Odriozola CP, Garrido Cordero JA, Daura J, Sanz M, Martinez-Blanes JM, Aviles MA. Amber imitation? Two unusual cases of Pinus resin-coated beads in Iberian Late Prehistory (3rd and 2nd millennia BC). PLoS One. 2019 May 3; 14 (5): e0215469. doi: 10. 1371/ journal. pone. 0215469. PMID: 31051007; PMCID: PMC- 6499543.
  • Solórzano-Kraemer MM, DelclOs X, Engel MS, Penalver E. A revised definition for copal and its significance for paleontological and Anthropocene biodiversity-loss studies. Sci Rep. 2020 Nov 16; 10 (1): 19904. doi: 10. 1038/ s41598- 020- 76808- 6. PMID: 33199762; PMCID: PMC- 7669904.
  • Escalante DE, Aldrich CC, Ferguson DM. Parameterization and Application of the General Amber Force Field to Model Fluro Substituted Furanose Moieties and Nucleosides. Molecules. 2022 Apr 19; 27 (9): 2616. doi: 10. 3390/ molecules- 27092616. PMID: 35565967; PMCID: PMC- 9101125.
  • Boudinot BE, Richter AK, Hammel JU, Szwedo J, Bojarski B, Perrichot V. Genomic-Phenomic Reciprocal Illumination: Desyopone hereon gen. et sp. nov., an Exceptional Aneuretine-like Fossil Ant from Ethiopian Amber (Hymenoptera: Formicidae: Ponerinae). Insects. 2022 Sep 1; 13 (9): 796. doi: 10. 3390/ insects- 13090796. PMID: 36135497; PMCID: PMC- 9502205.
  • Shi G, Dutta S, Paul S, Wang B, Jacques FM. Terpenoid compositions and botanical origins of Late Cretaceous and Miocene amber from China. PLoS One. 2014 Oct 29; 9 (10): e111303. doi: 10. 1371/ journal. pone. 0111303. PMID: 25354364; PMCID: PMC- 4213060.
  • Seyfullah LJ, Roberts EA, Schmidt AR, Ragazzi E, Anderson KB, Rodrigues do Nascimento D Jr, Ferreira da Silva Filho W, Kunzmann L. Revealing the diversity of amber source plants from the Early Cretaceous Crato Formation, Brazil. BMC Evol Biol. 2020 Aug 20; 20 (1): 107. doi: 10. 1186/ s12862- 020- 01651- 2. PMID: 32819273; PMCID: PMC- 7439571.
  • Quinney A, Mays C, Stilwell JD, Zelenitsky DK, Therrien F. The range of bio inclusions and pseudo inclusions preserved in a new Turonian (~90 ma) amber occurrence from Southern Australia. PLoS One. 2015 May 13; 10 (5): e0121307. doi: 10. 1371/ journal. pone. 0121307. PMID: 25970501; PMCID: PMC- 4430482.
  • Shi, Z., Xin, C., & Wang, Y. (2023). Spectral Characteristics of Unique Species of Burmese Amber. Minerals, 13 (2), 151. https:// doi.  org/ 10. 3390/ min- 13020151
  • Carroll NR, Chiappe LM, Bottjer DJ. Mid-Cretaceous amber inclusions reveal morphogenesis of extinct rachis-dominated feathers. Sci Rep. 2019 Dec 2; 9 (1): 18108. doi: 10. 1038/ s41598- 019- 54429- y. PMID: 31792276; PMCID: PMC- 6889117.
  • Stach P, Natkaniec-Nowak L, Dumanska- Stowik M, Kosakowski P, Naglik B, Drzewicz P, Misiak J, Prsek J, George C, Ramirez Gomez RE. The study of Dominican amber-bearing sediments from Siete Canadas and La Cumbre with a discussion on their origin. Sci Rep. 2021 Sep 17; 11 (1): 18556. doi: 10. 1038/ s41598- 021- 96520- 3. PMID: 34535688; PMCID: PMC- 8448851.
  • Sadowski EM, Hofmann CC. The largest amber-preserved flower revisited. Sci Rep. 2023 Jan 12; 13 (1): 17. doi: 10. 1038/ s41598- 022- 24549- z. PMID: 36635320; PMCID: PMC- 9837116.
  • Coppola ME, Petritz A, Irimia CV, Yumusak C, Mayr F, Bednorz M, Matkovic A, Aslam MA, Saller K, Schwarzinger C, Ionita MD, Schiek M, Smeds AI, Salinas Y, Brüggemann O, D’Orsi R, Mattonai M, Ribechini E, Operamolla A, Teichert C, Xu C, Stadlober B, Sariciftci NS, Irimia-Vladu M. Pinaceae Pine Resins (Black Pine, Shore Pine, Rosin, and Baltic Amber) as Natural Dielectrics for Low Operating Voltage, Hysteresis-Free, Organic Field Effect Transistors. Glob Chall. 2023 Sep 6; 7 (9): 2300062. doi: 10. 1002/ gch2. 202300062. PMID: 37745829; PMCID: PMC- 10517313.
  • Lambert, Joseph & Poinar, George. (2002). Amber: The Organic Gemstone. Accounts of chemical research. 35. 628- 36. 10. 1021/ ar0001970.
  • Murillo-Barroso M, Colliga AM, Martinon- Torres M. The earliest Baltic amber in Western Europe. Sci Rep. 2023 Aug 31; 13 (1): 14250. doi: 10. 1038/ s41598- 023- 41293- 0. PMID: 37653106; PMCID: PMC- 10471576.
  • McCoy VE, Soriano C, Pegoraro M, Luo T, Boom A, Foxman B, Gabbott SE. Unlocking preservation bias in the amber insect fossil record through experimental decay. PLoS One. 2018 Apr 5; 13 (4): e0195482. doi: 10. 1371/ journal. pone. 0195482. PMID: 29621345; PMCID: PMC- 5886561.
  • Koller B, Schmitt JM, Tischendorf G. Cellular fine structures and histochemical reactions in the tissue of a cypress twig preserved in Baltic amber. Proc Biol Sci. 2005 Jan 22; 272 (1559): 121- 6. doi: 10.1098/ rspb. 2004. 2939. PMID: 15695201; PMCID: PMC-1634957.
  • Delclos X, Penalver E, Ranaivosoa V, Solorzano-Kraemer MM. Unraveling the mystery of “Madagascar copal”: Age, origin and preservation of a Recent resin. PLoS One. 2020 May 18; 15 (5): e0232623. doi: 10.1371/ journal. pone. 0232623. Erratum in: PLoS One. 2020 Jul 2; 15 (7): e0235695. PMID: 32421746; PMCID: PMC- 7233546.
  • Kundalevich A, Zyubin A, Matveeva K, Samusev I, Lyatun I. Determination of Anthracene Derivatives in Baltic Amber Using SERS. Sensors (Basel). 2023 Feb 14; 23 (4): 2161. doi: 10. 3390/ s23042161. PMID: 36850758; PMCID: PMC- 9962695.
  • Luo Y, Zhou S, Takeda R, Okazaki K, Sekita M, Sakamoto K. Protective Effect of Amber Extract on Human Dopaminergic Cells against 6-Hydroxydopamine-Induced Neurotoxicity. Molecules. 2022 Mar 10; 27 (6): 1817. doi: 10. 3390/ molecules- 27061817. PMID: 35335178; PMCID: PMC- 8956085.
  • Brody RH, Edwards HG, Pollard AM. A study of amber and copal samples using FT-Raman spectroscopy. Spectro him Acta A Mol Biomol Spectrosc. 2001 May; 57 (6): 1325- 38. doi: 10. 1016/ s1386-1425 (01) 00387- 0. PMID: 11419475.
  • Zhu, Z., Chen, C., Zhu, Y., Shang, E., Zhao, M., Guo, S., Guo, J., Qian, D., Tang, Z., Yan, H., & Duan, J. (2019). Exploratory Cortex Metabolic Profiling Revealed the Sedative Effect of Amber in Pentylenetetrazol-Induced Epilepsy-Like Mice. Molecules, 24(3). https:// doi. org/ 10. 3390/ molecules- 24030460
  • Zheng, T., Li, H., Lu, T., Chen, X., Li, B., & Liu, Y. (2021). Spectroscopic Identification of Amber Imitations: Different Pressure and Temperature Treatments of Copal Resins. Crystals, 11 (10), 1223. https:// doi. org/ 10. 3390/ crystal- 11101223.
  • Edwards, H. & Farwell, Dennis & Jorge-Villar, Susana. (2008). Raman microspectroscopic studies of amber resins with insect inclusions. Spectrochimica Acta. Part A, Molecular and biomolecular spectroscopy. 68. 1089- 95. 10. 1016/ j. saa. 2006. 11. 037.
  • Anderson KB. The nature and fate of natural resins in the geosphere. XII. Investigation of C-ring aromatic diterpenoids in Raritan amber by pyrolysis-GC-matrix isolation FTIR-MS. Geochem Trans. 2006 Mar 1: 7 (1): 2. doi: 10. 1186/ 1467- 4866- 7- 2. PMID: 16759406; PMCID: PMC- 1459126.
  • Lee TS, Allen BK, Giese TJ, Guo Z, Li P, Lin C, McGee TD Jr, Pearlman DA, Radak BK, Tao Y, Tsai HC, Xu H, Sherman W, York DM. Alchemical Binding Free Energy Calculations in AMBER20: Advances and Best Practices for Drug Discovery. J Chem Inf Model. 2020 Nov 23; 60 (11): 5595- 5623. doi: 10. 1021/ acs. Jim. O- c00613. Epub 2020 Sep 16. PMID: 32936637; PMCID: PMC- 7686026.

References

  • Dr. Indradeva Tripathi, Rasaratna Samuchhaya of Vagbhatacharya, 4/8, Hindi translation, 3rd edition, published by Chaukhamba Sanskrit Bhawan, K 37/ 116, Gopal Mandir Lane, Varanasi – 221 001.
  • National Formulary of Unani Medicine. Part III. New Delhi: Central Council for Research in Unani Medicine; 2001. 20 р.
  • National Formulary of Unani Medicine. Part I. New Delhi: Central Council for Research in Unani Medicine; 2006. р. 46, 72, 78, 110, 231.
  • Dr. Harishankar Pathak, editor, ‘Jatak Parijat’ of Daivagya Vaidyanath, 2/21, Hindi translation, 1st edition, published by Chaukhamba Surabharati, Varanasi – 221001, 2012.
  • Khan A. Muheet-i-Azam. Vol 2. New Delhi: Central Council for Research in Unani Medicine; 2013. p. 788- 90.
  • Zhu, M., & Guo, Y. (2023). New Insights into the Coloration Mechanism in Spessartines and the Impact of Munsell Neutral Grey Backgrounds. Crystals, 13 (11), 1529. https:// doi. org/ 10. 3390/ cryst- 13111529
  • Zhao, Z., & Guo, Y. (2021). Color Quality Evaluation of Bluish-Green Serpentinite Based on the CIECAM16 Model. Minerals, 12(1), 38. https:// doi. org/ 10. 3390/ min- 12010038
  • Hakim A. Bustanul Mufradat. New Delhi: Idara Kitabu Shifa; 2011. 112 p. Rafiquddin M. Kanzul Advia Mufrada. AMU, Aligarh: University Publication Unit; 1985. p. 389, 390
  • Dubey, Sonali & Kumar, Rohit & Pati, Jayanta & Kiefer, Johannes & Rai, Awadhesh. (2021). Rapid Analysis of Chemical Composition and Physical Properties of Gemstones Using LIBS and Chemometric Technique. Applied Sciences. 11. 6156. 10. 3390/ app- 11136156.
  • Harishankar Pathak, editor, ‘Faladipika’ of Mantreshwara, 2/29, 1st edition, Hindi translation, published by Chaukhamba Surabharati, Varanasi – 221001. 
  • Dr. Vilas Dole, Dr. Parkasha Paranjpe, A textbook of Rasa Shastra, reprinted 2016, Chaukambha Sanskrit Pratishthana, Delhi.
  • National Formulary of Unani Medicine. Part V. New Delhi: Central Council for Research in Unani Medicine; 2008. 
  • Qarabadin Sarkari. New Delhi: Central Council for Research in Unani Medicine. 
  • Dr. Ravinder Angadi, A textbook of Rasa Shastra, Iatro- Chemistry and Ayurveda Pharmaceutics, First edition, Chaukambha Surbharti Parkashana, Varanasi.
  • P. Himsagara Chandra Murthy, Rasa- Shastra, the Mercurial system, Chaukambha Sanskrit series office, Varanasi.
  • Dr. Damodara Joshi, Rasa Amritam, Chaukambha Sanskrit Sansthana, Varanasi. Pio, Edwina & Kilpatrick, Rob & Le Fevre, Mark. (2017). 
  • Navratna – the nine gems: Illuminating enablers, barriers, and vignettes of South Asian women leaders. South Asian Journal of Business Studies. 6. 00- 00. 10. 1108/ SAJBS- 05- 2016- 0045.
  • Dokras, Uday. (2020). Navaratna (GEM) Therapy.
  • R., Shyam & Aithal, Sreeramana. (2023). Connecting Planetary Gods (Navagrahas) with Gods of Management (9 Ms). 2. 33- 47. 10. 5281/ zenodo. 8112182.
  • Baitar I. Al- Jami Li- Mufradatul Advia waAl- Aghzia. Vol. 2. New Delhi: Central Council for Research in Unani Medicine; 2000. p. 348, 349.
  • Kabiruddin M. Makhzanul Mufradat. New Delhi: Idara Kitabus Shifa; 2014. p. 240, 241.
  • Ghani N. Khazainul Advia. New Delhi: Idara Kitabus Shifa; 2011. p. 765, 766.
  • Bharati Kumari, Shreebhagwan Singh, Umesh Chandra Sinha. Correlation of Ayurveda and Astrology on Health. Ayushdhara. 2022 Sep. 30 [cited 2024 Jan. 25]; 9 (Supp- l1): 86- 9.  https:// ayushdhara. in/ index. php/ ayushdhara/ article/ view/ 1007
  • Seraj, Snaa & monjur- e- khudha, Mohammad & Aporna, S.A. & Khan, Shamiul & Islam, Farukul & Jahan, Rownak & Mou, S.M. & Khatun, Z. & Rahmatullah, Mohammed. (2011). 
  • Use of semiprecious- stones for preventive and curative purposes: A survey among the traditional medicinal practitioners of the bide community of Bangladesh. American-Eurasian Journal of Sustainable Agriculture. 5. 263- 269.
  • Savage A. Spring Books: Precious and semi-precious gems. Br Med J (Clin Res Ed). 1981 Apr 18; 282 (6272): 1295. PMCID: PMC- 1505318.
  • FORBES TR. Chalcedony and childbirth: precious and semi-precious stones as obstetrical amulets. Yale J Biol Med. 1963 Apr; 35 (5): 390- 401. PMID: 13958688; PMCID: PMC- 2604313.
  • Kabiruddin M. Bayaz-i-Kabir. 5thed. Vol. 2. New Delhi, India; Aijaz Publishing House; 1934. p. 426, 430, 452, 453.
  • Ashraf MH. Makhzanul Mufradat Ma Murakkabat wa Khwasul Advia. New Delhi: Aijaz Publishing House; 2011. 
  • Nasir MAH. Mufradat Nasiri Mae Takmila. India: Qaisari Publication. YNM.
  • Anandan AR, Thulasimani. Siddha Materia Medica (Mineral and Animal Kingdom). Department of Indian Medicine and Homeopathy, Chennai; 1985. 
  • National Formulary of Unani Medicine. Part VI. New Delhi: Central Council for Research in Unani Medicine, 2011.  Qarabadin Majidi. Delhi: Alami Printing Press. YNM.

Dr. Sahil Gupta completed his Bachelor of Ayurveda in Medicine and Surgery (B.A.M.S.) and Master’s Degree in Health Administration (MHA) India. He is Registered Ayurvedic Doctor & Vaidya in India having Registration No. 23780. He is the CEO and founder of IAFA. After completing BAMS, Dr. Sahil Gupta started practicing Ayruveda by giving prime importance to allergic disorders management. He became the first Ayurvedic doctor to cure Food Allergies through Ayurveda. Read More About Dr. Sahil Gupta.

Read More Articles

Contact IAFA Ayurveda - WhatsApp Live Chat