On This Page

Chandramani Stone (Moonstone – Hecatolite) – The Astrological and Ayurvedic Benefits

Introduction

Moonstone is a sodium potassium aluminum silicate, with the chemical formula K Al Si3 O8 /Na Al Si2 O8. It possesses a hardness of 6 and a specific gravity of 2.6. Its name is derived from a visual effect or sheen, caused by light reflecting internally in the moonstone from layer inclusion of different feldspars. Moonstones have been used as jewelry for centuries, including ancient civilizations. The Romans admired moonstone, as they believed it was born from solidified rays of the moon. Both the Romans and Greeks associated Moonstone with their lunar gods and goddesses. The most common moonstone is of the mineral adularia. The plagioclase feldspar oligoclase also produces moonstone specimens. Moonstone is a feldspar with a pearly and opalescent luster. An alternate name is hecatolite. Moonstone is composed of two feldspar species, orthoclase and albite. The two species are intermingled. Then, as the newly formed mineral cools, the intergrowth of orthoclase and albite separates into stacked, alternating layers. When light falls between these thin, flat layers, it scatters in many directions producing the phenomenon called adularescence.

मूनस्टोन एक सोडियम पोटेशियम एल्यूमीनियम सिलिकेट है, जिसका रासायनिक सूत्र K Al Si3 O8 /Na Al Si2 O8 है। इसमें कठोरता 6 और विशिष्ट गुरुत्व 2.6 है। इसका नाम दृश्य प्रभाव या चमक से लिया गया है, जो विभिन्न फेल्डस्पार के परत समावेशन से चंद्रमा के पत्थर में आंतरिक रूप से प्रतिबिंबित होने वाले प्रकाश के कारण होता है। मूनस्टोन का उपयोग प्राचीन सभ्यताओं सहित सदियों से आभूषण के रूप में किया जाता रहा है। रोमन लोग मूनस्टोन की प्रशंसा करते थे, क्योंकि उनका मानना ​​था कि यह चंद्रमा की ठोस किरणों से पैदा हुआ था। रोमन और यूनानी दोनों ही मूनस्टोन को अपने चंद्र देवी-देवताओं से जोड़ते थे। सबसे आम मूनस्टोन खनिज एडुलारिया का है। प्लाजियोक्लेज़ फेल्डस्पार ऑलिगोक्लेज़ मूनस्टोन नमूने भी तैयार करता है। मूनस्टोन मोती और ओपेलेसेंट चमक वाला फेल्डस्पार है। एक वैकल्पिक नाम हेकाटोलाइट है। मूनस्टोन दो फेल्डस्पार प्रजातियों, ऑर्थोक्लेज़ और एल्बाइट से बना है। दोनों प्रजातियाँ आपस में जुड़ी हुई हैं। फिर, जैसे ही नवगठित खनिज ठंडा होता है, ऑर्थोक्लेज़ और एल्बाइट की अंतरवृद्धि खड़ी, बारी-बारी परतों में अलग हो जाती है। जब प्रकाश इन पतली, सपाट परतों के बीच गिरता है, तो यह कई दिशाओं में बिखर जाता है, जिससे एड्यूलरेसेंस नामक घटना उत्पन्न होती है।

Astrological View of Chandrakant / Indukant / Chandramani / Shashi Kant / Chandropal (Moonstone / Hecatolite / Parthite)

उपरत्न वर्ग के खनिजपाषाण में काठिन्य, चमक, पारदर्शकता रत्नो  की अपेक्षा कम गुणवाले होते है। इनका मूल्य भी कम होता है। अतः इन्हें उपरत्न  कहा  जाता है। उपरत्नों की संख्या में मतभिन्नता है- आनन्दकन्दकार ने 9 उपरत्न माने है।  जबकि आयुर्वेदप्रकाशकार ने 15 उपरत्न माने है। बृहद योगतरंगिणीकार ने 4 ही उपरत्न  माने है। रसतरंगिणीकार ने छः उपरत्न माने है। आनन्दकन्दकार ने विमल, सस्यक, कान्त एवं तारकान्त को भी उपरत्न  में शामिल कर दिया है। बृहत् योग तरंगिणीकार ने मुक्ता प्रवाल को भी उपरत्न  वर्ग में मानकर और भी भ्र्म पैदा किया है।  आयुर्वेद प्रकाशकार ने ५ प्रचलित उपरत्नो के अतिरिक्त १० नए उपरत्न को इस वर्ग में शामिल किया है परन्तु सबसे अधिक रस तरंगिणी का मत ही प्रचलित है। 

Reference- आ. क. क्रि. व १/ १२

सूर्यकान्तश्चन्द्रकान्तस्तारकान्तस्तु कान्तक:  

वैक्रान्तश्च नृपावर्तस्सस्यको विमला तथा।

पैरोजश्च नवैतानि ह्युपरत्नानि निर्दिशित।। 

Reference: आयुर्वेद प्रकाश ५/ ६- ८

वैक्रान्तः सूर्यकान्तश्च चन्द्रकान्तश्तथैवं :  

राजावर्तो लालसंज्ञ: पैरोजाख्यस्तथा अपर: ।। 

मुक्ता शुक्तिस्तथा शेख: कर्पूरशमा अथ काचजा:  

मणयो नीलपीताद्या हन्ये विषहराश्च ये।। 

वह्यादिस्तम्भका ये ते सर्वे हि परीक्षकै:  

गणिता द्लुपरत्नेषु मणयो लोकविश्रुता: ।। 

Reference: बृहत् योग तरंगिण ४३/ ८२

मुक्ता विद्रुम शंखाश्व राजावर्तस्तथैव च। उपरत्नानि चत्वारि कथितानि मनीषिभिः।।  

Reference: Rasa Trangini. 23/ 154

वैक्रान्त सूर्यकान्त चन्द्रकांतो नृपो पल |

पेरोजकञ्च स्फटिकम क्षुद्र रत्न गणो हव्यम।।

There are six Uparatna as per Rasa Trangini 

  • Vaikranta (Fluorite/ Tourmaline) 
  • Suryakanta (Spinel) (Na, O, CaO, Al, 2SiO)
  • Candrakant (Moonstone) (K, Si, O, Na, Al, Si)
  • Raja-varta (Lapis Lazuli) (Na, Ca), (Al, SiO) (S, SO, Cl)
  • Pairojaka (Turquoise)
  • Sphatika (Rock crystal)

A few gems are also added to the list of Uparatna by NCISM and they mention a total 13 number of Upratnas. They are as follows:

  • Vaikranta (Fluorite/ Tourmaline) 
  • Suryakanta (Spinel) (Na, O, CaO, Al, 2SiO)
  • Candrakant (Moonstone) (K, Si, O, Na, Al, Si)
  • Raja-varta (Lapis Lazuli) (Na, Ca), (Al, SiO) (S, SO, Cl)
  • Pairojaka (Turquoise)
  • Sphatika (Rock crystal)
  • Putika (Peridote)
  • Trinkanta (Amber, Succinum)
  • Rudhiram/ rudhir Putika (Carnelion)
  • Palankam/ Palakam (Onyx, CaSO4, 2H2O)
  • Vyomasma (Jade)
  • Kosheyaashm
  • Sougandhik

Upratna is Mentioned in Different Ayurvedic Literature

Upratna name/ semi-precious stoneAyurveda PrakashaAanand KandBrihat Yog TaranginiRasa Trangini
Suryakanta+++
Chandrakant+++
Vaikrant+++
Rajavart++++
Perojak+++
Saphatik+
Taarkaant+
Kaant+
Sasyak+
Vimal+
Laalmani+
Mukta Shukti+
Shankh ++
Karpurashma+
Kaachmani+
Neelmani +
Peetmani +
Vishhar Mani +
Agni Stambhak Mani+
Jal Stambhak Mani++
Mukta +
Parvala+
Ayurveda Classes and Courses Online

Properties of Semi-Precious Stone (Upratna)

Name Chemical compositionStructureHardness Specific GravityRefractive indexDouble refraction
Fluorite (Vaikrant)CaF2Cubic43.181.43None
Spinel (Suryakant)MgAl2O4Cubic83.601.71- 1.73None
Moonstone (Chandrakant)KAlSi3O8Monoclinic62.571.52- 1.530.005
Lapis Lazuli (Rajavart)(Na, Ca)8, (Al, Si12 O24 (SO4) Cl2 (OH)Various5.52.801.50None
Turquoise (Perojaka)Cu Al6 (PO4)4 (OH)8 5 H2OTriclinic62.801.61- 1.650.004
Rock Crystal (Sphatika)SiO2Trigonal72.651.54- 1.550.009
Jade (Vyomashma)NA (AL, FE) Si2O6Monoclinic73.331.66- 1.680.012
Onyx (Palanka)SiO2Trigonal72.611.53- 1.540.004
Carnelian (Rudhiram, Akeek)SiO2Trigonal72.611.53- 1.540.004
Peridot (Putika)(Mg, Fe)2 SiO4Orthorhombic6.53.341.64- 1.690.036
Amber (Trinkant)C6 H16 OAmorphous2.51.081.54- 1.55N/ A
Dr. Sahil Gupta - Famous Ayurvedic Allergy Specialist

Have A Health Issue?

Consult Online

- Dr. Sahil Gupta (B.A.M.S., M.H.A.)

Ayurvedic Allergy Specialist
CEO & Founder of IAFA®

Consult Now

Chandrakant Upratna (Semi-Precious Stone) is Indicated as a Substitute for Precious Stones as Per Astrological Science to Nullify the Maleficent Effect of Various Planets (Grahas) and to Treat the Roga (Disorders) Related to that Planet

Not everyone is affluent, and the affordability of precious stones remains beyond the means of many individuals. In light of this, semiprecious stones emerge as a viable and more accessible alternative. These gemstones, while not as costly as their precious counterparts, possess unique and appealing qualities. Embracing semi precious stones allows a broader spectrum of people to enjoy the beauty and symbolism associated with gemstones without the financial strain associated with acquiring precious ones.

Planet Precious Gem UsedSubstitute Semi-Precious Stone
Sun (Surya)Manikya (Ruby)
Moon (Chandra)Mukta (Pearl)Chandrakant (moonstone)
Mars (Mangala)Vidruma (Coral)
Mercury (Buddha)Markat (Emerald)-
Jupiter (Guru)Pushapraga (Topaz)
Venus (Shukra)Vajra (Diamond)
Saturn (Shani)Neelam (Blue sapphire)
Rahu Gomeda (Hessonite)
Ketu Vaidurya (Cat’s eye stone)

Diseases Induced by Maleficent Effects of Planets (Greha Roga) or Diseases Induced by Dushkarma (Sinful Deeds) Done by the Rogi (Patient) i.e Karma Vipaka Siddhanta

Planet Diseases Caused
Sun Shoth (Inflammation in the body), Apsmar (Epilepsy), Paitikavikara, Jawara (Fever), Diseases of the eye, skin, and bone, rational fears, Bites from poisonous reptiles like snakes, weakening the digestive system, and constipation.
Moon Sleep diseases such as Anidra (insomnia) or somnambulism (sleepwalking), Kaphaj Kasa, Atisara, Alsaya, Agnimandya (Loss of appetite), Aruchi (Disinterest in food), Kamala (Jaundice), Chitudvega, Grehani, Hydrophobia, Fear of animals with horns, Problems concerning women, Hallucinations
MarsTrishna (Excessive thirst), Bilious disorders, Flatulence, Excessive fear of fire, Gulma, appendicitis, Kustha (Leprosy), eye disorder, Apsmar (Epilepsy), Rakta Vikara, Majja Vikar (Bone marrow diseases), Kandu (Itching), Ruksha Twaka (Rough skin).
MercuryLack of self-confidence, Gala Rog (Throat problems like goiter, etc.), Nasagata Rog (Nose Diseases), Vata- Kaphaj Roga, Cold and Cough, Flatulence, Poisoning. Twaka Dosha (Skin diseases), Vicharchika. Jaundice.
Jupiter Gulma, Appendicitis, Karan Vedna (an ear disease), Sanyas.Frequent litigation, Problems with friends, parents, and relatives.
Venus Pandu (Anaemia), Netra Roga (Disorders of the eye), Flatulence, Cough, Mutrakrich (Urinary disease), Prameha (Diabetes), Syphilis, Shukra-Vyapati (Low sperm count), Impotence, Dryness of Mouth, Constipation, Irrational fears.
Saturn Flatulence, Cough, Pain in the legs, Excessive Fatigue, Illusion, Daha (Excessive heat in the body), Mental shocks, Personal calamities, and Accidents causing temporary or lasting wounds.
Rahu Heart diseases such as an attack, Shotha (Inflammation), Kushtha (Leprosy), illusions, hallucinations, disease due to poisoning, excessive hurt, and wounds.
Ketu Unknown mysterious diseases, cannot be easily found by doctors.

Types of Chandrakant / Indukant / Chandramani / Shashi Kant / Chandropal (Moonstone / Hecatolite / Parthite) As Per Astrology

रत्न विज्ञान और आधुनिक रत्न विज्ञान में इसका  कोई भेद  नहीं  मिलता  है।

No classification of Chandrakant is specified in classics.

Types of Chandrakant / Indukant / Chandramani / Shashi Kant / Chandropal (Moonstone / Hecatolite / Parthite)

Chandrakant/ Shashi Mnai or moon stone is as beautiful, and attractive, as Upratna (Semi-precious gemstone) famous for its adularescence. Chandrakant Mani is of various types, and each type of moonstone has unique characteristics and appearances. Below are the famous types of moonstones that are famous among gemologists and gem lovers.

Blue Moonstone (Neel Chandrakant): Blue moonstone/ Neel Chandrakant, which is famous for the name blue sheen moonstone, is known for its stunning blue adularescence. Due to this unique characteristic in the blue variety of Chandra Kant, it resembles the soft glow of moonlight reflecting off the water.  Blue moonstone variety is highly prized for its beauty and is often associated with emotional balance.

Physical Attributes of the blue stone: Neel Chandrakant/ Blue moonstone exhibits a semi-transparent to translucent appearance with a bluish-white or blue sheen. The blue adularescence intensity of Neel Chandrakant/ blue moonstone may vary and depends on the quality of the stone.

Metaphysical Properties of the blue moonstone: Neel Chandrakant or blue moonstone is associated with the Vissudha Chakra or throat Chakra which helps in good expression of emotions and also improves communications. Along with this Neel Chandakant also gives psychic abilities and in astrology and the Yogic world, it is very famous for spiritual and meditation practices.

Cultural Significance: In ancient cultures throughout the world Neel Chandrakant or so-called, blue moonstone is a Upratna that is associated with the Chandra Greha (moon planet), moon goddesses, and lunar deities. To attune energies of the Chandra/ moon different spiritual seekers, priests, etc wear or use it as jewelry or Talisman. 

Rainbow Moonstone: Rainbow Moonstone exhibits different types of colors when it is seen from different angles like pink, purple, yellow, blue, etc. Due to the iridescent flashes, reminiscent of a rainbow, this Upratna is very famous. Which symbolizes positivity, and spiritual awakening of the individual.

Physical Attributes of the Rainbow Moonstone: The Rainbow moonstone has internal fractures due to which it exhibits a stunning beautiful display of colors and also exhibits a milky-white appearance. The mystical and dynamic appearance of the rainbow moonstone is due to the change in the color ship of the rainbow moonstone under light.

Metaphysical Properties of the rainbow moonstone: Rainbow stone exhibits feminine energy and is very famous for promoting inner harmony, balancing the emotional body, helps in spiritual growth, and self-discovery.

Cultural Significance of the rainbow moonstone: Rainbow moonstone is the sacred Upratna and is considered to be associated with the Chandra Deva (Moon God). It is believed that wearing a rainbow moonstone brings the blessing of Moon God/ Chandra Greha and also provides protection, abundance, and prosperity to the wearer. In Ayurvedic practice along with astrological practice, Rainbow moonstone is used for relieving stress, anxiety, etc.

Peach Moonstone: The moonstone with orange and peach hue is known as peach moonstone. The semi-precious stones are famous for creativity, compassion, and love. 

Physical Attributes of Peach Moonstone: This semi-precious stone exhibits an opaque to translucent appearance and has orange or peach coloration. Its mystical allure is due to soft adularescence.

Metaphysical Properties of peach moonstone: Peach moonstone is a semi-precious stone that is associated with the sacral chakra (one of the Shad Chakra), which helps to increase the passion, emotional expression, and creativity of the wearer. 

Cultural Significance of the peach moonstone: This semi-precious stone is represented as a symbol of love, and fertility and is used in various ceremonies related to childbirth, marriage, etc. This moonstone is associated with the Aphrodite Goddess and exhibits various feminine energies.

White Moonstone: The semi-precious variety of moonstone i.e. white moonstone has a milky-white appearance with a soft blue adularescence due to which it promotes inner peace, exhibits calming energy, intuition, etc.

Physical Attributes of the white moonstone: This variety of moonstone has an opaque to translucent appearance which gives this moonstone a pearly white appearance. Sometimes this stone also exhibits a blue sheen that occurs when this moonstone is viewed from different angles.

Metaphysical Properties of the white moonstone: This semi-precious stone is associated with Aagya Chakra (Crown Chakra) which is present at the top of the head and is related to higher consciousness and promotes a deeper connection to the divine.

Cultural Significance of the white moonstone: This variety of Chandrakant is associated with Chandra Greha and wearing this stone helps the wearer to get the energies of the moon which also helps in helping and nullifying the maleficent effect of the moon.

Black Moonstone: The variety of the Upratna Chandrakant which is characterized by its opaque appearance with flashes of gold, silver, and blue is very rare and is known as black moonstone.  This semi-precious stone i.e. black variety of Chandrakant is believed to possess grounding energies and protective energies.

Physical Attributes of the black Moonstone: The semi-precious stone with charcoal-black appearance and when viewed under light exhibits flashes of iridescent colors. This variety of Chandrakant is dark but may display gray markings or white markings.

Metaphysical Properties of the black moonstone: A black variety of the chandrakant is associated with the chakra which is located at the base of the spine i.e. Root Chakra is believed to protect against negative energies, environmental pollutants, etc. 

Cultural Significance: This variety of semi-precious stones is used as a powerful talisman of protection and grounding by various astrologers.

Synonyms of Chandrakant / Indukant / Chandramani / Shashi Kant / Chandropal (Moonstone / Hecatolite / Parthite)

Reference: Rasa Trangini. 23/ 187

चंद्रकांतश्च चंद्रमणिस्त्था चन्द्रोपलहव्य:

शशिकांतश्च इंदुकान्त: एव परिकीर्तत: ।।

Reference: Ayurveda Parkash. 5/ 142

इंदुकान्तश्च चंद्रकांतश्च चन्द्रशमा चन्द्र्जोपल:  

शीतात्मा चन्द्रिका द्राव: शशिकांतश्च सप्तधा।।

Indukant, Chandrasma, Chandrajopala, Sitatma, Chandrikadrava and Shashikant, Chandramani and Chandrapala. All these are the synonymous words used in the classics for Chandrakant.

इंदुकान्त, चंद्रकांत, चन्द्राश्म, चन्द्र्जोपल, शीततमा, चन्द्रिका द्राव, शशिकांत, चंद्रमणि, चन्द्रोपल।

Family- Orthoclase

Names of Chandrakant / Indukant / Chandramani / Shashi Kant / Chandropal (Moonstone / Hecatolite / Parthite) in Different Languages

  • Chandrakant Mani (Hindi)
  • Candrikkantikkal (Tamil)
  • Chandrakantha Kal (Malayalam)
  • Candrakanta Kallu (Kannada)
  • Candrakanta Mani (Telugu)
  • Moon stone (English)

Reference of Chandrakant / Indukant / Chandramani / Shashi Kant / Chandropal (Moonstone / Hecatolite / Parthite)

Ayurvedic Books on Allergies and Child Health

Formation of the Chandrakant / Indukant / Chandramani / Shashi Kant / Chandropal (Moonstone / Hecatolite / Parthite)

The Chandrakant semi-precious stone is famous among gemologists and gem lovers because of its mesmerizing adularescence and eternal beauty. Its formation occurs due to various geological and mineralogy phenomena. The formation of Chandrakant occurs initially by the process of crystallization that occurs within igneous rocks, after that, there are the transformative effects of metamorphism and metasomatism, and in this way, the Chandrakant from raw mineral turns into a polished gem. The process of formation of the Chandrakant (moonstone) is as follows:

Igneous Formation: The formation of the moonstone starts in the igneous rocks where particularly pegmatite and granite are present as the constituent minerals. These rocks which contain pegmatite and granite and help in the formation of Chandrakant (moonstone) are formed in the igneous rock through the slow cooling and solidification of molten magma. During this process, the primary content of the Chandrakant i.e. Feldspar crystallizes along with other minerals such as quartz, amphibole, mica, etc.

Feldspar Composition: A significant portion of the Earth’s crust is made up of the mineral Feldspar which is a famous rock-forming mineral. The minerals which include orthoclase and microcline that is potassium feldspar are the group to which moonstone (Chandrakant) belongs. The aluminum silicate combined with potassium, sodium, or calcium ions is the main chemical constituents present in the feldspar.

Intergrowth of Minerals: The intergrowth of two different types of feldspar minerals i.e. orthoclase and albite results in the special characteristic of the Chandrakant (moonstone) i.e. Sheen is also known as adularescence. As the magma cools and solidifies to form igneous rocks, Orthoclase, and albite crystallize in alternating layers within the feldspar structure as the result of the cooling of magma and solidification of the magma to the igneous rocks. When this intergrowth occurs in the rock it creates a special optical phenomenon known as labradorescence, which gives Chandrakant Upratna its luminous sheen reminiscent of moonlight.

Metamorphic Transformation: Due to geological processes such as regional metamorphism, contact metamorphism, and tectonic movements Chandrakant (moonstone) undergoes metamorphism after its formation within the igneous rock. Changes in temperature, pressure, and chemical composition which transform existing rocks into new forms is the metamorphism process.

Hydrothermal Alteration: Through a process known as metasomatism the igneous rock containing the feldspar that helps in the formation of the Chandrakant infiltrates with the hydrothermal fluid that is rich in aluminum, potassium, and silica. The introduction of this hydrothermal fluid in the feldspar introduces new compounds in the feldspar structure which creates the conditions necessary for the formation of moonstones.

Sheen Development: The light scattering between the alternating layers of orthoclase and albite within the feldspar structure results in the evolution of the famous characteristic of the Chandrakant Upratna which is adularescence. When light enters the stone, it is scattered by microscopic structures Within the crystal lattice, when light enters it is scattered by the microscopic structures creating a luminous sheen that when viewed from different angles appears to move and shift.

Crystal Growth and Cleavage: Chandrakant typically has vitreous luster or pearly luster and forms opaque masses, or transparent to translucent crystals which are massive.

Moonstone typically forms massive, opaque masses or translucent to transparent crystals with a pearly or vitreous luster. The moonstone (Chandrakant) tends to break along flat planes parallel to the crystal structure which is due to its characteristic cleavage which is a result of the internal arrangement of atoms within the feldspar minerals.

History of Chandrakant / Indukant / Chandramani / Shashi Kant / Chandropal (Moonstone / Hecatolite / Parthite)

The history of Chandrakant Upratna is very rich and intertwined with various cultures and civilizations throughout the ages. The Chnadrakant Upratna/ moonstone has captured the imagination of people across the globe due to its popularity in Victorian jewelry. 

Ancient Origins of the Chandrakant Mani: Chandrakant Upratna i.e. Moonstone semi-precious stone was associated with their lunar deities, such as Diana and Selene in ancient Rome and Greece. The Chandrakant is imbued with mystical properties and symbolism as it was believed that this Upratna was formed from solidified moonlight. In Hindu mythology, Chandrakant was associated with the Bhagwan (God) Chandra/ Moon planet/ Chandra Greha and was considered sacred which brings blessings of abundance, protection, and prosperity to the wearer.

Victorian Era: Moonstone experienced a surge in popularity During the Victorian era (1837-1901), Chandrakant surged in popularity due to Queen Victoria’s love for jewelry. As Chandrakant Upratna has an iridescent sheen, soft, captured the romantic and mystical sentiments of the time so it is loved by Queen Victoria. Chandrakant Upratna/ Moonstone was often used in earrings, brooches, pendants, and tiaras, in the Victorian Era.

चंद्रकांत उपरत्न का इतिहास बहुत समृद्ध है और युगों-युगों से विभिन्न संस्कृतियों और सभ्यताओं से जुड़ा हुआ है। चंद्रकांत उपरत्न/मूनस्टोन ने विक्टोरियन आभूषणों में अपनी लोकप्रियता के कारण दुनिया भर में लोगों का ध्यान खींचा है। चंद्रकांत उपरत्न यानी मूनस्टोन अर्ध-कीमती पत्थर प्राचीन रोम और ग्रीस में उनके चंद्र देवताओं, जैसे डायना और सेलेन से जुड़ा था। चंद्रकांत रहस्यमय गुणों और प्रतीकवाद से युक्त है क्योंकि ऐसा माना जाता था कि इस उपरत्न का निर्माण ठोस चांदनी से हुआ था। हिंदू पौराणिक कथाओं में, चंद्रकांत भगवान (भगवान) चंद्र/चंद्र ग्रह/चंद्र ग्रह से जुड़ा था और पवित्र माना जाता था जो पहनने वाले के लिए प्रचुरता, सुरक्षा, समृद्धि का आशीर्वाद लाता है। मूनस्टोन ने लोकप्रियता में वृद्धि का अनुभव किया विक्टोरियन युग (1837-1901) के दौरान, चंद्रकांत की लोकप्रियता में वृद्धि हुई, जिसका कारण महारानी विक्टोरिया का आभूषणों के प्रति प्रेम था। चूंकि चंद्रकांत उपरत्न में इंद्रधनुषी चमक है, कोमलता है, उस समय की रोमांटिक और रहस्यमय भावनाओं को दर्शाया गया है, इसलिए यह महारानी विक्टोरिया को पसंद है। विक्टोरियन युग में चंद्रकांत उपरत्न/मूनस्टोन का उपयोग अक्सर झुमके, ब्रोच, पेंडेंट और टियारा में किया जाता था।

Characteristics of Chandrakant / Indukant / Chandramani / Shashi Kant / Chandropal (Moonstone / Hecatolite / Parthite)

Chandrakant Upratna’s hardness and cleavage to its transparency and color, each characteristic plays a role in defining its beauty and value in the world of gemstones. The physical properties or the characteristics of the Chandrakant are as follows: 

Hardness: The durability and resistance to abrasion and scratches of the Chandrakant Upratna or the Moonstone is determined by its hardness which is 6 on the Mohs scale of mineral hardness. Due to the hardness of the Chandrakant i.e. 6 it is considered best or harder from the materials like glass and many other gemstones and considered softer compared to harder gemstones such as diamond, ruby, sapphire, and topaz. To prevent damage and maintain the luster and beauty of the Chandrakant/ moonstone over time it should be protected and handled carefully.

Shape and cut: Chandrkant Upratna is often found in the market in rounded or oval-shaped cabochons, which are polished, domed gemstones. The shape and cut of Chandrakant Upratna can vary depending on factors such as the quality and origin of the rough material.

Specific Gravity: The specific gravity of the Chandrakant Upratna/ moonstone is 2.6 which measures the density of a mineral or gemstone i.e. Chandrakant Upratna relative to the density of water. 

Transparency: Chandrakant/ Chandramani/ Shashi Mani is translucent to opaque, depending on factors such as the presence of internal fractures, the quality of the stone, and the inclusions. The visibility of the adularescent sheen that is characteristic of this Chandrakant enhances the translucent variety of the Chandrakant/ moonstone as it allows light to pass through it. The milky or cloudy appearance is present in the opaque variety of the Chandrakant Upratna due to less light transmission. The visual appeal and value of a gemstone of the Chandrakant/ moonstone depends on the transparency characteristic of the stone.

Color: Chandrakant Upratna exhibits various colors which increase its beauty like the most common moonstone/ Chandrakant Upratna that is available in white, which gives this stone a pearly white appearance with a blue adularescent sheen. Other colors of the moonstone are blue, rainbow, peach, and black. Peach moonstone/ Peach color Chandrakant exhibits orange hues or warm peach hues, while blue moonstone / Neel Chandrakant features a stunning blue adularescence reminiscent of moonlight on water. Rainbow moonstone displays a captivating color, like blue, purple, pink, and yellow, creating a dynamic and iridescent effect. Black moonstone, a rarer variety, has a dark, opaque appearance with flashes of blue, silver, or gold. 

Cleavage: The tendency of a mineral to break along flat planes parallel to its crystal structure is known as cleavage and Chandrakant exhibits a characteristic cleavage, which eases its cutting and polishing and also affects its durability. The crystallographic axes of the feldspar minerals that compose it are parallel to the cleavage planes of the Chandrakant Upratna. 

Luster: Luster refers to the way light is reflected from the surface of a mineral or gemstone. Chandrakant Upratna exhibits a pearly luster when polished, giving it a reflective appearance and smooth appearance. 

Grahaya Lakshana of Chandrakant / Indukant / Chandramani / Shashi Kant / Chandropal (Moonstone / Hecatolite / Parthite)

Reference: Rasa Trangini. 23/ 188

यत निर्मलं सुमृष्णं शिशिरं पीतं स्निग्धं परम् सुविशदम परम् पवित्रम।। 

स्त्रावं स्रवत्यात परम् तुहिनाशु संगाच चन्द्रोपलम खलु तदेव मतं तु जातयम।।

The Chandrakant, which is crystal clear, lustrous, which is cold to touch and has yellowish shade, which is Snigdha, Vishada and Pavitra (auspicious). Chandrakant, when exposed to the moon, leaves out moisture on its surface. Such a sample of Moon stone/ Chandrakant is fit, good and selected for astrological and pharmaceutical purposes.

चंद्रकांत, जो  उपरत्न स्पष्ट, चमकदार, छूने में ठंडा और पीले रंग का होता है, जो स्निग्ध, विषद और पवित्र (शुभ) होता है। चंद्रकांत, चंद्रमा के संपर्क में आने पर उसकी सतह पर नमी छोड़ देता है। मून स्टोन/चंद्रकांत का ऐसा नमूना उपयुक्त, अच्छा और ज्योतिषीय और फार्मास्युटिकल उद्देश्यों के लिए चुना गया है।

Reference: Rasa Ratna Sammuchya. 4/ 2/ 4 and Ayurveda Parkash 5/ 144

स्निग्धं शीतं पीतं त्रासं अंतधरते चित्ते स्वछताम यत मुनीनां। 

यच्च स्त्रावं याति चंद्राशु संग जात्यम रत्नम चंद्रकांत ख्यातमेतत।।

It should be smooth, cool in touch, yellowish in color, having no partial opacity (Trasa Dosha), very clear from the inside i.e. having no discoloration or lines or cracks or spots), and that which oozes when exposed to the moonlight, is to be called as a good moonstone/ Chandrakanta. Oozing when subjected to moonlight appears to be hyperbole, but dew drops may settle on it during the time.

यह चिकना, छूने में ठंडा, पीले रंग का, आंशिक अपारदर्शिता (त्रस दोष) से ​​रहित, अंदर से बहुत साफ होना चाहिए अर्थात इसमें कोई मलिनकिरण या रेखाएं या दरारें या धब्बे नहीं होने चाहिए, और जो चंद्रमा के प्रकाश के संपर्क में आने पर रिसता है। एक अच्छा चाँद-रत्न/ चन्द्रकांत कहा जाना चाहिए। चंद्रमा की रोशनी के संपर्क में आने पर रिसना अतिशयोक्तिपूर्ण प्रतीत होता है, लेकिन इस दौरान ओस की बूंदें उस पर जम सकती हैं।

Chandrakant / Indukant / Chandramani / Shashi Kant / Chandropal (Moonstone / Hecatolite / Parthite) Aayu (Lifespan of moonstone)

Reference: Rasa Jala Niddhi. 3/ 4, Ratna Dhatu Vigyana

न जरां यान्ति रत्नानि मौक्तिकं विद्रुमं बिना।

Though the gemstones of mineral origin are eternal, the Exception is Mukta (pearl) which has a limited lifespan, and also Vidruma- coral. After a few years, it grows old and eventually loses its character, but other gemstones are eternal, but they also need to be maintained and revitalization of them is necessary to get maximum benefits.

आयु- कुछ समय पश्चात्‌ काल प्रभाव से प्रवाल, मुक्ता खराब हो जाते है। किन्तु अन्य रत्नों पर काल का प्रभाव नहीं होता है।

Chandrakant / Indukant / Chandramani / Shashi Kant / Chandropal (Moonstone / Hecatolite / Parthite) Aayu after Dharana (Lifespan of Moonstone after Assumption)

It is believed by scholars that the following gemstones have effectiveness Diamond life span is 10 years, Ruby/ Manik’s 12 years, Yellow Sapphire/ Pukhraj’s lifespan is 15 years, Blue Sapphire/ Neelam’s life span is 15 years, Emerald/ Panna’s life is 12 years, Coral, Hessonite Garnet and Cat’s Eye’s lifespan is 3 to 5 years, Natural Pearl life span is 12 years. 

All the other Uparatnas and other semi-precious alternate gemstones are said to have a lifespan of 3 years.

Over some time, when gemstones i.e. precious and semi-precious stones are worn these gems start to get scratches on their surface, and even start losing their high polishing due to which sun rays stop passing through the gems (Ratna) When these precious gems are wear for a long period a greasy layer starts to deposit on their surface which is probably a mixture of lubricants, oils and other materials that a wearer come in contact with it. As the deposition starts to get thicker with time, it even blocks the rays (different wavelengths) that these stones receive from the planets to give effect. Although gemstones are forever yes, their effectiveness for astrological purposes falls and therefore proper and regular maintenance is important.

Therefore, we can consider the life span of semi-precious stone Chandrakant/ Indukant/ Chandramani/ Shashi Kant/ Chandropal (Moonstone/ Hecatolite/ Parthite) to be 3 years.

Chandrakant / Indukant / Chandramani / Shashi Kant / Chandropal (Moonstone / Hecatolite / Parthite) Used for Different Zodiac Signs (Rashi)

Chandrakant/ Shashi Mani is associated with various Jyotisha Shastra Rashi (zodiac signs) due to its astrological properties and along with this Chandrakant Mani has a deep connection to the Chandra Greha (Moon planet). Chandrakant Upratna is linked with Karka Rashi (Cancer), Meena Rashi (Pisces), and Vrishchika Rashi (Scorpio). 

Cancer (Karka Rashi): The Karka Rashi (Cancer Zodiac sign) is ruled by the Chandra Greha (Moon planet). The individual with the Karka Rashi (Cancer zodiac Rashi) has a nurturing nature and is very emotional and intuitive. When these individuals wear Chandra Kant mani (Moonstone), it enhances a deeper connection to their emotions and intuition, promotes emotional healing, helps them to navigate their feelings with grace and understanding, and also brings their inner growth.

Pisces (Meena Rashi): The people with Meena Rashi (Pisces zodiac sign) are very imaginative, sensitive individuals and are dreamy. Meena Rashi people have a deep connection to the spiritual realm and when they wear Chandrakant Mani it increases their psychic abilities, and intuition, helps them to explore their subconscious mind, and helps them to convert their dream into reality.  

Scorpio (Vrishchika Rashi): The people with Vrishika Rashi (Scorpio zodiac sign) when wearing Moonstone/ Chandrakant Mani which helps to calm and balance the individual. Along with this Chandrakant wearing helps them to navigate their deep emotions and complex relationships with greater ease and insight. 

Occurrence or Places of Availability of Chandrakant / Indukant / Chandramani / Shashi Kant / Chandropal (Moonstone / Hecatolite / Parthite)

Chandrakant famous for with names moonstone and parthite, is a variety of the two minerals of feldspar i.e. albite and orthoclase and it can be found in several locations worldwide, including Sri Lanka, Myanmar, India, Madagascar, Brazil, and the United States. Historically, Sri- Lanka is the main and most important source of high-quality Upratna Chandrakant/ Chandra Mani, which is famous for their blue adularescence. In this phenomenon, Chandrakant exhibits a glowing appearance similar to moonlight. India also produces large quantities of Chandrakant, which exhibits peach or rainbow adularescence. The United States (specifically North Carolina and Virginia), Myanmar, Madagascar, and Brazil, are also famous for their Shashimani/ Chandrakant deposits, although their Chandrakant are not of as high quality as Sri Lanka and India. 

मूनस्टोन और पार्थाइट नाम से प्रसिद्ध चंद्रकांत, फेल्डस्पार के दो खनिजों यानी एल्बाइट और ऑर्थोक्लेज़ की एक किस्म है और यह श्रीलंका, म्यांमार, भारत, मेडागास्कर, ब्राजील और संयुक्त राज्य अमेरिका सहित दुनिया भर में कई स्थानों पर पाया जा सकता है। ऐतिहासिक रूप से, श्रीलंका उच्च गुणवत्ता वाले उपरत्न चंद्रकांत/चंद्र मणि का मुख्य और सबसे महत्वपूर्ण स्रोत है, जो अपनी नीली आभा के लिए प्रसिद्ध है। इस घटना में चंद्रकांत चांदनी के समान चमकीला रूप प्रदर्शित करता है। भारत भी बड़ी मात्रा में चंद्रकांत का उत्पादन करता है, जो आड़ू या इंद्रधनुषी शोभा प्रदर्शित करता है। संयुक्त राज्य अमेरिका (विशेष रूप से उत्तरी कैरोलिना और वर्जीनिया), म्यांमार, मेडागास्कर, ब्राजील भी अपने शशिमणि/चंद्रकांत भंडार के लिए प्रसिद्ध हैं, हालांकि उनके चंद्रकांत श्रीलंका और भारत की तरह उच्च गुणवत्ता के नहीं हैं।

Purification of Chandrakant / Indukant / Chandramani / Shashi Kant / Chandropal (Moonstone / Hecatolite / Parthite)

In classical literature no Shodhana or purification method of Chandrakant has been mentioned.

Incineration of Chandrakant / Indukant / Chandramani / Shashi Kant / Chandropal (Moonstone / Hecatolite / Parthite)

Reference: Rasa Tarangini. 23/ 190

कुंटी हिंगलोपेत: कन्या नीरेण पेषित: 

चंद्र कान्त: सु पुटितो म्रियते नात्र संशय:।। 

चंद्रकांत को लोहे के इमामदस्ते  में कूटकर सूक्ष्म चूर्ण करके उसमे संभाग शुद्ध हिंगुल और शुद्ध मनशिला मिलाकर घृतकुमारी स्वरस की भावना देकर मर्दन करे।  फिर टिकिया बना सुखाकर शराव सम्पुट कर गज पुट की अग्नि में पाक करने पर भस्म हो जाती है।

The required quantity of Chandrakant is taken in a clean Khalva Yantra. It is added with equal quantities of Suddha Manshila and Shuddha Hingul and triturated to obtain a homogenous mixture. This mixture is enclosed in Sarava Samputa and subjected to one Puta (Laghu Puta). This entire procedure is repeated seven times to obtain properly prepared Chandrakant Bhasma.

Chandrakant / Indukant / Chandramani / Shashi Kant / Chandropal (Moonstone / Hecatolite / Parthite) Properties: (Bhasma / Incineration)

चंद्रकांत अत्यंत शीतल है, रक्तपित्त, पित्तरोग, रक्त रोग, ज्वर रोग और दाह नाशक है तथा स्निग्ध है। धारण करने से दरिद्रता को मिटाता है।  भगवान् शिव चंद्रकांत मणि से प्रसन्न  होते है।

Reference: Ayurveda Parkash. 5/ 143

शिशिर चंद्र कान्तस्तु स्निग्ध: पित्त अस्त्र ताप्नुत

शिव प्रीतिकर: स्वच्छा ग्रह लक्ष्मी विनाशन: 

Chandrakanta possesses Sheeta Guna. It is Snigdha and mitigates vitiated Pitta Dosha. It is considered as Shiva Priya Ratna. If worn on the body, it claims to bring on good wealth.

चंद्रकांता के पास शीतल गुण है। यह स्निग्ध है और खराब पित्त दोष को कम करता है। इसे शिव प्रिया रत्न माना जाता है। इसे शरीर पर धारण करने से धन लाभ होने का दावा किया जाता है।

Reference: Rasa Tarangini. 23/ 189

चंद्र कान्तो अति शिशिर: स्निग्ध: पित्तापह: परम्। 

रक्त पित्त प्रश्मनस्तथा दाह निषूदन: ।।   

Chandrakant possesses Sheeta Guna (cold potency). It is Snigdha, it mitigates vitiated Pitta Dosha, cures Rakta Pitta Roga and brings down the burning sensation all over the body.

चंद्रकांत में शीतल गुण है। यह स्निग्ध है, यह खराब पित्त दोष को कम करती है, रक्त पित्त रोग को ठीक करती है और पूरे शरीर में जलन को कम करती है।

Dosage and Usage of Chandrakant / Indukant / Chandramani / Shashi Kant / Chandropal (Moonstone / Hecatolite / Parthite)

1/ 2 Ratti to 1 Ratti (62 to 125 mgs) is the general dosage of the Chandrakant Bhasma. However, the dosage of the Chandrakant Bhasma has to be finalized after thorough consideration of all the relevant factors that affect the dosage like Atura Bala, Vyadhi Bala, etc.    

Anupana (Adjuvant / Vehicle) for Use of Chandrakant / Indukant / Chandramani / Shashi Kant / Chandropal (Moonstone / Hecatolite / Parthite)

Honey or any other suitable medicine.

अनुपान- मधु |

Important Formulation of Chandrakant / Indukant / Chandramani / Shashi Kant / Chandropal (Moonstone / Hecatolite / Parthite)

  • Chandrakant Bhasma

Recent Research on Chandrakant / Indukant / Chandramani / Shashi Kant / Chandropal (Moonstone / Hecatolite / Parthite)

  • Iamsupa, Natdanai & Srithai, Boontarika & Boonsoong, Apichet. (2016). Gemological Characteristics of Moonstone from Sri Lanka.
  • Rao, R. & Venkateswarulu, P. & Chinta, Kasipathi & Sivajyothi, S. (2013). Trace elemental analysis of Indian natural moonstone gems by PIXE and XRD techniques. Applied radiation and isotopes: including data, instrumentation, and methods for use in agriculture, industry, and medicine. 82- C. 211- 222. 10. 1016/ j. Paradiso. 2013. 07. 030.
  • Seraj, Snaa & monjur- e- khudha, Mohammad & Aporna, S.A. & Khan, Shamiul & Islam, Farukul & Jahan, Rownak & Mou, S.M. & Khatun, Z. & Rahmatullah, Mohammed. (2011). 
  • Use of semi precious- stones for preventive and curative purposes: A survey among the traditional medicinal practitioners of the wide community of Bangladesh. American-Eurasian Journal of Sustainable Agriculture. 5. 263- 269.
  • Savage A. Spring Books: Precious and semi-precious gems. Br Med J (Clin Res Ed). 1981 Apr 18; 282 (6272): 1295. PMCID: PMC- 1505318.
  • Freni, Giulia. (2023). Herbs as pharmaca: between Medicine, Astrology, and Magic. Studia Ceranea. Journal of the Waldemar Ceran Research Centre for the History and Culture of the Mediterranean Area and South-East Europe. 10. 1- 8778/ 2084- 140X. 13. 06.
  • Zwaan, J.C. (Hanco). (2014). Gem Notes: Blue Kyanite from Tanzania. The Journal of Gemmology. 34. 198- 200.
  • Le, Nang & Tien, Pham & Ho Nguyen, Man. (2023). Mining Basalt-Related Gems in Southeast Vietnam. Gems & Gemology. 59. 399- 401.
  • Bycroft, Michael & Dupre, Sven. (2019). Introduction: Gems in the Early Modern World: Materials, Knowledge and Global Trade, 1450– 1800. 10. 1007/ 978- 3- 319-96379- 2- 1.
  • Jianjun, Li & Weng, Xiaofan & Liu, Xiaowei & Yu, Xiao-Yan & Chen, Zhenyu & Li, Guihua. (2013). Infrared Spectroscopic Study of Filled Moonstone. Gems & Gemology. 49. 10. 5741/ GEMS. 49. 1. 28. The laboratory of the National Gold & Diamond Testing Center (NGDTC) encountered some plagioclase (moonstone) beads with blue adularescence. Fifteen of the 22 moonstones fluorescence moderate to strong bluish-white to long-wave UV, with the fluorescence visible in fissures. Electron microprobe analysis of one bead and micro-infrared reflectance spectra of all 22 samples indicated a composition nearly identical to albite. The specimens with strong fluorescence exhibited 3053 and 3038 cm (-1) peaks in their direct transmission infrared spectra, confirming impregnation by a material with a benzene structure. This treatment can be detected with a standard gemological microscope by observing characteristics such as relief lines.
  • Yu, Xiao-Yan & Long, Zheng-Yu & Zhang, Yi & Lijie, Qin & Zhang, Cun & Xie, Zhirong & Wu, Yu-Rui & Yan, Ying & Wu, Mingke & Wan, Jiaxin. (2021). Overview of Gemstone Resources in China. Crystals. 11. 1189. 10. 3390/ cryst- 11101189.
  • Kumar, M. & Naga Raju, Guntupalli & Padala, Sarita & Bhuloka, S. & Byreddy, Seetharami. (2010). Trace elemental analysis of aerosol samples using the particle-induced X-ray emission technique. Indian Journal of Environmental Protection. 30. 593- 603.
  • Huong, Le & Häger, Tobias & Hofmeister, W. & Hauzenberger, Christoph & Schwarz, Dietmar & Long, Pham & Wehrmeister, Ursula & Khoi, Nguyen & Nhung, Nguy. (2012). Gemstones from Vietnam: An Update. Gems and Gemology. 48. 158. 10. 5741/ GEMS. 48. 3. 158.
  • Simonet, Cedric & Okundi, S. & Masai, P. (2002). The general setting of colored gemstone deposits in the Mozambique Belt of Kenya Preliminary considerations.
  • Sánchez Munoz, Luis & Sanz, Jesús & Sobrados, Isabel & Gan, Zhehong. (2013). Medium-range order in disordered K-feldspar by multinuclear NMR. American Mineralogist. 98. 2115- 2131. 10. 2138/ am. 2013.4448.
  • Yang, Yan & Huang, Weihua & Qi, Zeming & Xia, Qun-Ke. (2022). Nitrogen Retention in Feldspar: Implications for Nitrogen Transport in Subduction Zones. Journal of Geophysical Research: Solid Earth. 127. 10. 1029/ 2021JB023347.
  • Stubna, Jan & Hanus, Radek. (2020). Jewelry uses a transparent green orthoclase from Luc Yen in Vietnam. 10. 5- 11.
  • Kontonikas-Charos, Alkis & Ciobanu, Cristiana & Cook, Nigel & Ehrig, Kathy & Ismail, Roniza & Krneta, Sasha & Basak, A. K. (2018). Feldspar mineralogy and rare earth element (re)mobilization in iron-oxide copper gold systems from South Australia: a nanoscale study. Mineralogical Magazine. 82. 10. 1180/ minmag. 2017. 081. 040.
  • Fuertes, Victor & Reinosa, J.J. & Fernández, Jose & Enríquez, Esther. (2021). Engineered feldspar-based ceramics: A review of their potential in the ceramic industry. Journal of the European Ceramic Society. 42. 10. 1016/ j. jeurceramsoc. 2021. 10. 017.
  • Alkhalil, Shireen & Essa, Salman. (2020). EFFECT OF SEDIMENTATION SOURCE ON THE NATURE OCCURRENCE AND DISTRIBUTION OF THE FELDSPAR IN SOME SOIL OF ALLUVIAL PLAIN IRAQ.
  • Acosta-Vigil, Antonio & London, David & VI, George & Dewers, Thomas. (2006). Dissolution of Quartz, Albite, and Orthoclase in H2O Saturated Haplogranitic Melt at 800 C and 200 MPa: Diffusive Transport Properties of Granitic Melts at Crustal Anatectic Conditions. Journal of Petrology. 47. 231- 254. 10. 1093/ petrology/ egi073.
  • Demir, C. & Abramov, A.A. & Çelik, Mehmet. (2001). Flotation separation of Na-feldspar from K-feldspar by monovalent salts. Minerals Engineering. 14. 733- 740. 10. 1016/ S0892- 6875 (01) 00069- 3.
  • Hellmann, Roland & Zhai, Yuanyuan & Robin, Eric & Findling, Nathaniel & Mayanna, Sathish & Wirth, Richard & Schreiber, Anja & Cabie, Martiane & Zeng, Qingdong & Liu, Shanke & Liu, Jianming. (2021). The hydrothermal alkaline alteration of potassium feldspar: A nanometer-scale investigation of the orthoclase interface. Chemical Geology. 569. 120133. 10.1016/ j. chem. 2021. 120133.
  • Polymeris, George & Theodosoglou, Eleni & Kitis, George & Tsirliganis, Nestor & A., Koroneos & Paraskevopoulos, Konstantinos. (2013). Preliminary results on structural state characterization of K-feldspars by using thermoluminescence. Mediterranean Archaeology and Archaeometry. 13. 155- 161.
  • Bevan, J. & Savage, David. (1989). The Effect of Organic Acids on the Dissolution of K-feldspar Under Conditions Relevant to Burial Diagenesis. Mineralogical Magazine. 53. 415- 425. 10. 1180/ minmag. 1989. 053. 372. 02.
  • Welti, André & Lohmann, Ulrike & Kanji, Zamin. (2019). Ice nucleation properties of K-feldspar polymorphs and plagioclase feldspars. Atmospheric Chemistry and Physics Discussions. 1- 25. 10. 5194/ACP- 2018- 1271.
  • Liu, Lin-gun & El Goresy, Ahmed. (2007). High-Pressure Phase Transitions of the Feldspars, and Further Characterization of Lingunite. International Geology Review – INT GEOL REV. 49. 854- 860. 10. 2747/ 0020- 6814. 49. 9. 854.
  • Waldron, Kim. (1993). Solution-Redeposition and the Orthoclase-Microcline Transformation: Evidence from Granulites and Relevance to 18O Exchange. Mineralogical Magazine – MINER MAG. 57. 687- 695. 10. 1180/ minmag. 1993. 057. 389. 13.
  • Liu, Shanke & Zhai, Yuanyuan. (2021). Degree of Al-Si order in K-feldspar and its effect on K-feldspar’s dissolution. 90. 359- 369. 10. 13133/ 2239- 1002/ 17479.
  • Sánchez Muñoz, Luis & Garcia-Guinea, Javier & Beny, Jean-Michel & Rouer, Olivier & Campos, Rocío & Sanz, Jesus & Moura, Odulio. (2008). Mineral self-organization during the orthoclase-microcline transformation in a granite pegmatite. European Journal of Mineralogy – EUROPEAN J MINERAL. 20. 439- 446. 10. 1127/ 0935- 1221/ 2008/ 0020- 1844.
  • Hu, Haiying & Heping, bullet & bullet, Li & Dai, Lidong & Shuangming, bullet & bullet, Shan & Zhu, Chengming. (2013). Electrical conductivity of alkali feldspar solid solutions at high temperatures and high pressures. Physics and Chemistry of Minerals. 40. 51- 62. 10. 1007/ s00269- 012- 0546- 4.
  • Podymova, Natalia & Karabutov, A. A.. (2022). Nondestructive assessment of local microcracking degree in orthoclase and plagioclase feldspars using spectral analysis of backscattered laser-induced ultrasonic pulses. Ultrasonics. 125. 106796. 10. 1016/ j. ultras. 2022. 106796.
  • Jones, J & Nesbitt, R. & Slade, And. (1969). The Determination of the Orthoclase Content of Homogenized Alkali Feldspars Using the 01 X-ray Method. Mineralogical Magazine. 37. 10. 1180/ minmag. 1969. 037. 288. 09.
  • Karaguzel, Cengiz & Gulgonul, Ilhan & Demir, C. & Cinar, Mustafa & Çelik, Mehmet. (2006). The concentration of K-feldspar from a pegmatitic feldspar ore by flotation. International Journal of Mineral Processing. 81. 122- 132. 10. 1016/ j. minor. 2006. 07. 008.
  • Rossman, George & Shigley, James. (2005). Green orthoclase feldspar from Vietnam. Gems and Gemology.
  • Alexander, Ogbamikhumi & Eguagie, A. (2023). Characterization of Feldspars Associated with Pegmatite of Dagbala Area for Ceramics and Glass Production in Southwestern Nigeria. Journal of Applied Sciences and Environmental Management. 27. 1009- 1015. 10. 4314/ jasem. v27i5. 19.
  • Nojiri, Hiromi & Okuno, Masayuki & Okudera, Hiroki & Mizukami, Tomoyuki & Arai, Shoji. (2013). Structural change of alkali feldspar by ball milling. Journal of Mineralogical and Petrological Sciences. 108. 267- 277. 10. 2465/ jmps. 121122.
  • Icenhower, Jonathan & London, David. (1996). Experimental partitioning of Rb, Cs, Sr, and Ba between alkali feldspar and peraluminous melt. American Mineralogist. 81. 719- 734. 10. 2138/ am- 1996- 5- 619.
  • ZHANG, Yongwang & JIANG, Shanbin. (2021). SIMULATION EXPERIMENT ON THE EFFECT OF HYDRODYNAMICS ON ALTERATION OF ORTHOCLASE UNDER RESERVOIR CONDITIONS. Carpathian Journal of Earth and Environmental Sciences. 16. 251- 260. 10. 26471/ cjees/ 2021/ 016/ 171.
  • Ankjærgaard, Christina & Jain, Mayank. (2010). Optically stimulated phosphorescence in orthoclase feldspar over the millisecond to second-time scale. Journal of Luminescence. 130. 2346- 2355. 10. 1016/ j. Jimin. 2010. 07. 016.
  • Baker, D. & Freda, Armela. (2001). Eutectic crystallization in the undercooled Orthoclase-Quartz- system: experiments and simulations. European Journal of Mineralogy – EUROPEAN J MINERAL. 13. 453- 466. 10. 1127/ 0935-1221/ 2001/ 0013- 0453. 
  • Ahmadi, leila & Ghobadi, M.H. & Sepahi, Ali A. & izadi kian, Leili & Jafari, Seyedeh Razieh. (2023). Comparison of the Behavior of Quartz and Orthoclase in the Development of Microcracks. SSRN Electronic Journal. 10. 2139/ ssrn. 4397219.
  • Zuo, Hongyan & Liu, Rui & Lu, Anhuai. (2022). The Behavior of Water in Orthoclase Crystal and Its Implications for Feldspar Alteration. Crystals. 12. 1042. 10. 3390/ cryst- 12081042.
  • Abart, Rainer & Petrishcheva, E. & Wirth, Richard & Rhede, Dieter. (2009). Exsolution by spinodal decomposition II: Perthite formation during slow cooling of anatexites from Ngorongoro, Tanzania. American Journal of Science – AMER J SCI. 309. 450- 475. 10. 2475/ 06. 2009. 02.
  • Pryer, Lynn & Robin, Pierre-Yves. (2007). Retrograde metamorphic reactions in deforming granites and the origin of flame perthite. Journal of Metamorphic Geology. 13. 645 – 658. 10.1111/ j. 1525- 1314. 1995. tb00249. x.
  • Solé Viñas, Jesús & Pi Puig, Teresa & Ortega, Amabel. (2021). A Mineralogical, Geochemical and Geochronological Study of ‘Valencianite’ from La Valenciana Mine, Guanajuato, Mexico. Minerals. 11. 741. 10. 3390/ – min11070741.
  • Tajcmanova, Lucie & Abart, Rainer & Wirth, Richard & Habler, Gerlinde & Rhede, Dieter. (2012). Intracrystalline microstructures in alkali feldspars from fluid-deficient felsic granulites: A mineral chemical and TEM study. Contributions to Mineralogy and Petrology. 164. 10.1007/ s00410- 012- 0772- 2.
  • Parsons, I. & Lee, M. (2005). Minerals are not just chemical compounds. The Canadian Mineralogist. 43. 10. 2113/scanning. 43. 6. 1959.
  • Godfrey-Smith, Dorothy & Scallion, Patricia & CLARKE, M.. (2005). Beta dosimetry of potassium feldspars in sediment extracts using imaging microprobe analysis and beta counting. Geochronometria. 24.
  • Schaffer, Anne-Kathrin & Japel, Tom & Zaefferer, Stefan & Abart, Rainer & Rhede, Dieter. (2014). Lattice strain across Na-K interdiffusion fronts in alkali feldspar: an electron back-scatter diffraction study. Physics and Chemistry of Minerals. 41. 10. 1007/ s00269- 014- 0692- y.
  • Alabadi, Luma & Alabadi, Sagban & Kalaf, Salman. (2017). Effect of the Source of Sedimentation in the Mineralogical Composition of the Sand Fraction to Some Areas of the Southern Part of the Iraqi Alluvial Plain.
  • Juncomma, U. & Intarasiri, Saweat & Bootkul, D. & Tippawan, Udomrat. (2014). Ion beam analysis of rubies and their simulants. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 331. 102- 107. 10. 1016/ j. nimb. 2014. 02. 135.
  • Parsons, Ian & Fitz Gerald, John & Lee, James & Ivanic, Tim & Golla-Schindler, Ute. (2009). Time–temperature evolution of microtextures and contained fluids in a plutonic alkali feldspar during heating. Contributions to Mineralogy and Petrology. 160. 155- 180. 10. 1007/ s00410- 009- 0471- 9.
  • Raj, Manu & Kumar, Subramaniam. (2015). CHARACTERISATION OF SELECTED SULPHIDES ASSOCIATED WITH THE GRANITIC PEGMATITES OF NAGAMALAI-PUDUKOTTAI AREA, MADURAI DISTRICT, TAMIL NADU, INDIA. JOURNAL OF APPLIED GEOCHEMISTRY.
  • Kumari, Bharati & Singh, Mahendra & Singh, Shreebhagwan. (2022). Management of Female Infertility Through Mahakashaya. AYUSHDHARA. 76- 80. 10. 47070/ ayushdhara. v9iSuppl1. 990.
  • Parekh, Dipali & Makawana, Sarika & Patgiri, Biswajyoti. (2021). Comprehensive Appraisal on Shodhana Methods of Precious Gemstone: Vajra (Diamond). Global Journal of Health Science. 8. 8. 10. 21276/ apjhs. 2021. 8. 4. 35.
  • Kumari, Bharati & Singh, Shreebhagwan & Sinha, Umesh. (2022). Correlation of Ayurveda and Astrology on Health. AYUSHDHARA. 86- 89. 10. 47070/ ayushdhara. V- 9iSuppl1. 1007.
  • Silva, André & Carolina, Sílvio & Sousa, Débora & Schons, Elenice. (2019). Feldspar production from dimension stone tailings for application in the ceramic industry. Journal of Materials Research and Technology. 8. 1- 7. 10. 1016/ j. jmrt. 2018. 02. 011.
  • Ibrahim, D.M. & Aly, M. H. & Abdien, K. (2007). The role of flux on the sagging property of sanitaryware. InterCeram: International Ceramic Review. 56. 82- 85.
  • Freire- Lista, D. & Gomez- Villalba, L. & Fort, R. (2015). Microcracking of granite feldspar during thermal artificial processes. Periodico di Mineralogia. 84. 519- 537. 10. 2451/ 2015- PM0029.
  • Rao, Yinghua & Guo, Qingfeng & Zhang, Sixue & Liao, Living. (2023). Comparative Study on Gemmological Characteristics and Luminescence of Colorless and Yellow Scapolites. Crystals. 13. 462. 10. 3390/ cryst- 13030462.
  • Bernardo, Enrico & Doyle, J. & Hampshire, Stuart. (2008). Sintered feldspar glass–ceramics and glass– ceramic matrix composites. Ceramics International – CERAM INT. 34. 2037- 2042. 10. 1016/ j. ceramint. 2007. 07. 027.
  • Sadeghi, Hadis & Mahmoudi, Shahryar & Jafari, Mohammad & Arian, Mohammad. (2022). Petrogenesis of the Khaku pegmatites corundum-bearing in the margin of Alvand granite complex, and its comparison with important worldwide ruby and sapphire deposits. Journal of Economic Geology. 14. 123- 154. 10. 22067/ ECONG. 2022. 77895. 1050.
  • Cesare, Bernardo & Satish-Kumar, Madhusoodhan & Cruciani, Giuseppe & Shabeer, K. & Nodari, Luca. (2008). Mineral chemistry of Ti-rich biotite from pegmatite and metapelitic granulites of the Kerala Khondalite Belt (southeast India): Petrology and further insight into titanium substitutions. AMERICAN MINERALOGIST. 93. 327- 338. 10. 2138/ am. 2008. 2579.
  • Coenraads, Robert. (1990). Sapphires and rubies associated with volcanic provinces: inclusions and surface features shed light on their origin.
  • Robin, Pierre-Yves. (1974). Stress and Strain in Cryptoperthite Lamellae and the Coherent Solvus of Alkali Feldspars. American Mineralogist. 59.
  • Lee, M. & Parsons, I. & Edwards, PR & Martin, Robert. (2007). Identification of cathodoluminescence activators in zoned alkali feldspars by hyperspectral imaging and electron-probe microanalysis. American Mineralogist. 92. 10. 2138/ am. 2007. 2160.
  • Saminpanya, Seriwat & Sutherland, Frederick. (2011). Different origins of Thai area sapphire and ruby, derived from mineral inclusions and co-existing minerals. European Journal of Mineralogy. 23. 683- 694. 10. 1127/ 0935- 1221/ 2011/ 0023-2123.
  • Lewicka, Ewa. (2016). The studies of granitoids from the Sobótka region in light of theories of the origin of color in minerals. Gospodarka Surowcami Mineralnymi. 32. 10. 1515/ gospo- 2016- 0001.
  • Shi, Guanghai & Zhang, Xiaochong & Wang, Yu & Li, Qiu-Li & Wu, Fuyuan & He, Huaiyu. (2021). Age determination of oriented rutile inclusions in sapphire and of moonstone from the Mogok metamorphic belt, Myanmar. American Mineralogist. 106. 1852- 1859. 10. 2138/ am- 2021- 7487.
  • Abduriyim, Ahmadjan. (2009). A Mine Trip to Tibet and Inner Mongolia: Gemological Study of Andesine Feldspar.
  • Elbialy, Mohamed & Heikal, Mohamed. (2022). Origin and Economic Profits of Pegmatites: A Case Study from Egypt PREPARED BY. 10. 13140/ RG. 2. 2. 33300. 17289.
  • Nakagawa, Masaharu & Kehelpannala, K. & Manabe, Takahiro & Ranaweera, Lalindra Vishwajith & Nasu, Ayami. (2017). Kaolin deposit at Meetiyagoda, southwestern Sri Lanka. Clay Science. 21. 29- 34. 10. 11362/ jcssjclay- science. 21. 2- 29.
  • Johnson, Elizabeth. (2003). Hydrogen in nominally anhydrous crustal minerals.
  • Freeman, John & Wang, Alian & Kuebler, Karla & Jolliff, Brad & Haskin, Larry. (1477). Characterization of natural feldspars by Raman spectroscopy for future planetary exploration. The Canadian Mineralogist. 46. 1477- 1500. 10. 3749/cannon. 46. 6. 1477.
  • Zhang, Ying & Li, Ying & Li, Wendong & Sun, Zigang & Bi, Yunfeng. (2018). Classification of Geological Samples Based on Soft Independent Modeling of Class Analogy Using Laser-Induced Breakdown Spectroscopy. Journal of Spectroscopy. 2018. 1- 7. 10. 1155/ 2018/ 3683089.
  • Nakano, Satoshi & Makino, Kuniaki & Yoshida, Izumi & Maniwa, Kanae & Sawada, Kazuhiko & Sakashita, Fuko & Kohno, Toshio. (2019). Combined influences of iron-oxides and micropores on the reddish coloration of alkali feldspars in granitic rocks. The Journal of the Geological Society of Japan. 125. 759- 773. 10. 5575/ geosoc. 2019. 0025.
  • Lijie, Qin & Yu, Xiao-Yan & Guo, Hong-Shu. (2022). Fluid Inclusion and Chemical Composition Characteristics of Emeralds from Rajasthan Area, India. Minerals. 12. 641. 10. 3390/ min- 12050641.
  • Parsons, Ian & Fitz Gerald, John & Lee, M. (2015). Review. Routine characterization and interpretation of complex alkali feldspar intergrowths. American Mineralogist. 100. 1277- 1303. 10. 2138/ am- 2015- 5094.
  • Correcher, V. & Garcia-Guinea, Javier. (2011). Study of the luminescence properties of a natural amazonite. Radiation Measurements – RADIAT MEAS. 46. 971- 974. 10. 1016/ j. radius. 2011. 03. 007.
  • Dissanayake, Chandra & Chandrajith, Rohana & Tobschall, H. (2000). The geology, mineralogy and rare element geochemistry of the gem deposits of Sri Lanka. Bulletin of the Geological Society of Finland. 72. 10. 17741/ bgsf/ 72. 1- 2. 001.
  • Mcconnell, J.. (2008). The origin and characteristics of the incommensurate structures in the plagioclase feldspars. Canadian Mineralogist – CAN MINERALOG. 46. 1389- 1400. 10. 3749/cannon. 46. 6. 1389.
  • Olaniyi, Ajadi. (2021). Physicochemical Analyses of Feldspar Ceramic Glazes Produced with Borax and Potash. International Journal of Engineering Management and Economics. 3. 2326- 2331. 10. 35629/ 5252- 030723262331- Impact.
  • Blumentritt FB, Cancian G, Saporiti JM, de Holanda TA, Barbon FJ, Boscato N. Influence of feldspar ceramic thickness on the properties of resin cements and restorative set. Eur J Oral Sci. 2021 Apr; 129 (2): e12765. doi: 10. 1111/ eos. 12765. Epub 2021 Jan 17. PMID: 334- 55026.
  • Katupotha, Jinadasa. (2015). GEOLOGICAL AND ECONOMIC SIGNIFICANCE OF GEM GRAVEL DEPOSITS IN THE HAMBANTOTA DISTRICT. 10. 13140/ RG. 2. 1. 3367. 8802.
  • Deb, Mihir & Sarkar, Sanjib. (2017). Nonmetals, Industrial Minerals, and Gemstones. 10. 1007/ 978- 981- 10- 4564- 6_4.
  • Kawsihan, Anoja & Dissanayake, Sandun & Palihawadana, Tharaka & Wijesena, Ruchira & Tissera, Nadeeka & Mantilaka, Prasanga. (2018). Synthesis of Feldspar Nanoparticles by Top-Down Approach.
  • Fuertes, Victor & Del Campo, Adolfo & Fernández, Jose & Enríquez, Esther. (2019). Structural insights of hierarchically engineered feldspars by confocal Raman microscopy. Journal of Raman Spectroscopy. 50. 10. 1002/ jrs.a5556.
  • Sanchez Munoz, Luis & Del Campo, Adolfo & Fernández, Jose. (2016). Symmetry constraints during the development of anisotropic spinodal patterns. Scientific Reports. 6. 20806. 10.1038/ srep- 20806.
  • Soltan, Basim & Sadkhan, Muqdad & Mahdi, Maher & Ghalib, Hussein. (2023). Mineralogical And Geochemical Characteristics of Dur Al-Najaf Gemstones from Al-Najaf Province, Central Iraq.
  • Le, Nang. (2022). photochromic zircon from Dong Nai, Vietnam. 37. 25- 26.
  • Simmons, William. (2007). Gem-bearing pegmatites. Geology of Gem Deposits. 37. 169- 206.
  • Guven, Kiymet & Mutlu, Mehmet & Cırpan, Ceyhun & Kutlu, H Mehtap. (2013). Isolation and identification of selenite-reducing archaea from Tuz (salt) Lake In Turkey. Journal of basic microbiology. 53. 10. 1002/job. 201200008.
  • Popov, V. & Popova, V. & Polyakov, V.. (2007). Regular intergrowths of minerals in pegmatites from the Il’meny mountains. Geology of Ore Deposits. 49. 573- 582. 10. 1134/ S107570- 150707- 0136.
  • Simmons, William & Pezzotta, Federico & Shigley, James & Beurlen, Hartmut. (2012). Granitic Pegmatites as Sources of colored Gemstones. Elements- 8.
  • Garofalo, Paolo & Gunther, Detlef & Forti, Paolo & Lauritzen, Stein & Constantin, Silviu. (2007). The fluids of the giant selenite crystals of Naica (Chihuahua, Mexico).
  • Jaikumar, Dr & Dr. S. Sathiskumar, & Balakrishnan, Thangavelu & Ramamurthi, Kandasamy. (2016). Growth, structural, optical, thermal and mechanical properties of cytosine hydrogen selenite: A novel nonlinear optical single crystal. Materials Research Bulletin. 78. 10. 1016/ j. materresbull. 2016. 02. 019.
  • Li, Qiang & Geng, Lei & Lu, Hong-Yan & Dai, Kai & Cheng, Wen-Dan. (2018). Crystal structures and characterizations of two new selenite chlorides: 1D Ba 2 Zn (SeO 3) 2 Cl 2 and 2D Ba Zn 2 (SeO 3) 2 Cl 2. Journal of Solid-State Chemistry. 265. 10. 1016/ j. jssc. 2018. 05. 035.
  • Prameena, B & Anbalagan, Gopalakrishnan & Gunasekaran, Sethu. (2013). STRUCTURAL, THERMAL, AND DIELECTRIC STUDIES ON SELENITE MINERAL. International Journal of Metallurgical & Materials Science and Engineering (IJMMSE). 3. 1- 12.
  • Sinharoy, Arindam & Kumar, Manoj & Chaudhuri, Rayanee & Saikia, Sudeshna & Pakshirajan, Kannan. (2022). Simultaneous removal of selenite and heavy metals from wastewater and their recovery as nanoparticles using an inverse fluidized bed bioreactor. Journal of Cleaner Production. 376. 134248. 10. 1016/ j. jclepro.  2022. 134248.
  • Gurzhiy, Vladislav & Kuporev, Ivan & Kovrugin, Vadim & Murashko, Mikhail & Kasatkin, Anatoly & Plasil, Jakub. (2019). Crystal Chemistry and Structural Complexity of Natural and Synthetic Uranyl Selenites. Crystals. 9. 639. 10. 3390/ cryst- 9120639.
  • Katupotha, Jinadasa. (2004). SOCIO-ECONOMIC PERSPECTIVE OF ARTISANAL GEM MINING OF SRI LANKA (Abstract). 10. 13140/ RG. 2. 1. 2957. 6161.
  • Bachvarova- Nedelcheva, Albena & Iordanova, R. & Yordanov, Stancho & Dimitriev, Y. (2009). Optical properties of selenite glasses. Journal of Non-crystalline Solids – J NON- CRYST SOLIDS. 355. 2027- 2030. 10. 1016/ j. jnoncrysol. 2008. 06. 125.
  • Yokoyama, Yuka & Qin, Hai-Bo & Tanaka, Masato & Takahashi, Yoshio. (2021). The uptake of selenite in calcite was revealed by X-ray absorption spectroscopy and quantum chemical calculations. Science of The Total Environment. 802. 149221. 10. 1016/ j. smitten. 2021. 149221.
  • Venkateswara Rao R, Venkateswarulu P, Kasipathi C, Sivajyothi S. Trace elemental analysis of Indian natural moonstone gems by PIXE and XRD techniques. Appl Radiat Isot. 2013 Dec; 82: 211- 22. doi: 10. 1016/ j. Paradiso. 2013. 07. – 030. Epub 2013 Aug 14. PMID: 24055999.
  • Suastika, Komang & Yuwana, Lila & Hakim, Luqman & Darmaji, & Khusnul, Didik. (2017). Characterization of Central Kalimantan’s Amethysts by Using X-Ray Diffraction. Journal of Physics: Conference Series. 846. 012024. 10. 1088/ 1742-6596/ 846/ 1/ 012024.
  • Dahanayake, K. & Ranasinghe, A. P. (1985). Geology and mineralogy of gemming terrains of Sri Lanka. Bulletin of the Geological Society of Finland. 57. 139- 149. 10. 17741/ bgsf/ 57. 1- 2. 011.
  • Vijayan, Vijesh & Ramamurthy, V. & S.n.behera,. (2011). PARTICLE-INDUCED X-RAY EMISSION (PIXE) ANALYSIS OF COAL FLY ASH. International Journal of PIXE. 05. 10. 1142/ S0129083595000253.
  • Joseph, Daisy. (2010). Characterization of a few Gemstones by X-ray Emission Techniques (EDXRF and EXTERNAL PIXE). International Journal of PIXE. 21. 2010. 10. 1142/ S012908- 3510/ 002051.
  • Yamada, Raiki & Takahashi, Toshiro & Ogita, Yasuhiro. (2023). Petrogenesis of Oligocene to Miocene volcanic rocks from the Toyama basin of the SW Japan arc: Temporal change of arc volcanism during the back-arc spreading in the Japan Sea. Journal of Mineralogical and Petrological Sciences. 118. 10. 2465/ jmps. 221219a.
  • Guven, Kiymet & Mutlu, Mehmet & Cırpan, Ceyhun & Kutlu, H Mehtap. (2013). Isolation and identification of selenite-reducing archaea from Tuz (salt) Lake in Turkey. Journal of basic microbiology. 53. 10. 1002/job. 201200008.
  • Orti, Federico. (2012). Selenite facies in marine evaporites: A review. 10. 1002/ 97814443- 92326.ch20.
  • Mendelev N, Mehta SL, Idris H, Kumari S, Li PA. Selenite stimulates mitochondrial biogenesis signaling and enhances mitochondrial functional performance in murine hippocampal neuronal cells. PLoS One. 2012; 7 (10): e47910. doi: 10. 1371/ journal. pone. 0047910. Epub 2012 Oct 22. PMID: 23110128; PMCID: PMC- 3478265.
  • McClean S. The role of performance in enhancing the effectiveness of crystal and spiritual healing. Med Anthropol. 2013; 32 (1): 61- 74. doi: 10. 1080/ 01459. 740. 2012. 692741. PMID: 232. 06175.
  • Garofalo, Paolo & Fricker, Mattias & Günther, Detlef. (2011). Role of Fluid Inclusion Analysis in Understanding Gigantic Selenite Crystal Growth in a Deep Karst Cave (Naica, Mexico). CHIMIA International Journal for Chemistry. 65. 620. 10. 2533/ chimia. 2011. 620.
  • Roux M, Sarret G, Pignot-Paintrand I, Fontecave M, Coves J. Mobilization of selenite by Ralstonia metallidurans CH34. Appl Environ Microbiol. 2001 Feb; 67 (2): 769- 73. doi: 10. 1128/ AEM. 67. 2. 769- 773. 2001. PMID: 11157242; PMCID: PMC- 92646.
  • Kessi J, Turner RJ, Zannoni D. Tellurite and Selenite: how can these two oxyanions be chemically different yet so similar in the way they are transformed to their metal forms by bacteria? Biol Res. 2022 Apr 5; 55 (1): 17. doi: 10. 1186/ s40659- 022-00378- 2. PMID: 35382884; PMCID: PMC- 8981825.
  • Bai Z, Lee J, Kim H, Kuk Y, Choi MH, Hu CL, Ok KM. A Rare-Earth Selenite with Unexpectedly Well-Balanced Ultraviolet Nonlinear Optical Functionality, Sc (HSeO3 )3. Small. 2023 May; 19 (19): e2207709. doi: 10. 1002/small. 202207709. Epub 2023 Feb 9. PMID: 3675- 9968.
  • Wu VM, Ahmed MK, Mostafa MS, Uskoković V. Empirical and theoretical insights into the structural effects of selenite doping in hydroxyapatite and the ensuing inhibition of osteoclasts. Mater Sci Eng C Mater Biol Appl. 2020 Dec; 117: 111257. doi: 10. 1016/ j. msec. 2020. 111257. Epub 2020 Jul 6. PMID: 32919627; PMCID: PMC- 7501993.
  • Doello K, Mesas C, Quinonero F, Perazzoli G, Cabeza L, Prados J, Melguizo C, Ortiz R. The Antitumor Activity of Sodium Selenite Alone and in Combination with Gemcitabine in Pancreatic Cancer: An In Vitro and In Vivo Study. Cancers (Basel). 2021 Jun 25; 13 (13): 3169. doi: 10. 3390/ cancers- 13133169. PMID: 34201986; PMCID: PMC- 8268835.
  • Murthy SR, Shenoy R. Gem therapy and epilepsy. Anc Sci Life. 1990 Apr; 9 (4):185-90. PMID: 22557696; PMCID: PMC- 3331331.
  • Diella, Valeria & Bocchio, Rosangela & Caucia, Franca & Marinoni, Nicoletta & Langone, Antonio & Possenti, Elena & Hainschwang, Thomas. (2021). minerals New Insights for Gem- Quality Mn- Bearing Diopside- Omphacite, Violane Variety, from Saint-Marcel (Val D’Aosta, Italy): Its Trace Elements and Spectroscopic Characterization. Minerals. 11. 10. 3390/ min- 11020171.
  • Khan, Salman & Ghaffar Kashani, Abdul & Ullah, Inayat & Murad, Fida & Ahmed, Jalil & Kakar, Muhammad. (2021). A Case Study on Distribution of Gemstone in Bela Ophiolite, District Khuzdar, Balochistan. International Journal of Economic and Environment Geology. 12. 1- 10. 10. 46660/jpeg. Vol- 12. Iss4. 2021. 636.
  • Simmons, William & Pezzotta, Federico & Shigley, James & Beurlen, Hartmut. (2013). Granitic Pegmatites as Sources of Colored Gemstones. Elements. Vol 8. 281-287. 10. 2113/elements. 8. 4. 281.
  • Behera, Pradeep & Hussain, Sakir. (2019). Early Historic Gemstone Bead Workshops at the Badmal Asurgarh and Bhutiapali in the Middle Mahanadi Valley Region. 10. 1- 16. 10. 5334/ aa. 169.
  • (2021). From Oroonoko Tobacco to Blackamoor Snuffboxes: Race, Gender and the Consumption of Snuff in Eighteenth-Century Britain. Humanities, 10 (3), 92. https://doi.org/10.3390/h10030092
  • Pirš, B., Škof, E., Smrkolj, V., & Smrkolj, Š. (2021). Overview of Immune Checkpoint Inhibitors in Gynecological Cancer Treatment. Cancers, 14(3), 631. https://doi.org/10.3390/cancers14030631
  • Zulfaqar, M., Bashir, S., Yaghmour, S. M., Turi, J. A., & Hussain, M. (2022). The Mediating Roles of Economic, Socio-Cultural, and Environmental Factors to Predict Tourism Market Development Using Regenerative Travel: An Infrastructural Perspective of China–Pakistan Economic Corridor (CPEC). Sustainability, 15(6), 5025. https://doi.org/10.3390/su15065025
  • Robinson MF. The moonstone: more about selenium. J Hum Nutr. 1976 Apr;30(2):79-91. doi: 10.3109/09637487609144480. PMID: 1026773.
  • Florian, P., Gan, Z., & Muñoz, F. (2022). Order–Disorder Diversity of the Solid State by NMR: The Role of Electrical Charges. Minerals, 12(11), 1375. https://doi.org/10.3390/min12111375
  • Rao, Y., Guo, Q., Zhang, S., & Liao, L. (2023). Comparative Study on Gemmological Characteristics and Luminescence of Colorless and Yellow Scapolites. Crystals, 13(3), 462. https://doi.org/10.3390/cryst13030462
  • Quinn, E.P. & Laurs, Brendan. (2006). Gem News International: Moonstone from Madagascar. 42.
  • Nayak, Pranaba. (2013). Comment on “Trace elemental analysis of Indian natural moonstone gems by PIXE and XRD techniques” by Rao et al. [Appl. Radiat. Isot. 82 (2013) 211-222]. Applied radiation and isotopes: including data, instrumentation, and methods for use in agriculture, industry, and medicine. 85C. 85-86. 10.1016/j.apradiso.2013.11.141.
  • Promwongnan, Supparat & Ounorn, P. & Maneekrajangsaeng, M. & Leelawatanasuk, Thanong. (2017). An unusual blue synthetic star spinel. Journal of Gemmology. 35. 500-502.

References

  • Dr. Indradeva Tripathi, Rasaratna Samuchhaya of Vagbhatacharya, 4/8, Hindi translation, 3rd edition, published by Chaukhamba Sanskrit Bhawan, K 37/ 116, Gopal Mandir Lane, Varanasi – 221 001.
  • Kim, Eun-Ae. (2007). Effects of Tourmaline Gemstone Therapy on Dysmenorrhea and Painful Menstruation in Middle School Girls – Preliminary study -. Journal of Korean Biological Nursing Science.
  • National Formulary of Unani Medicine. Part III. New Delhi: Central Council for Research in Unani Medicine; 2001. 20 р.
  • National Formulary of Unani Medicine. Part I. New Delhi: Central Council for Research in Unani Medicine; 2006. р. 46, 72, 78, 110, 231.
  • Dr. Harishankar Pathak, editor, ‘Jatak Parijat’ of Daivagya Vaidyanath, 2/21, Hindi translation, 1st edition, published by Chaukhamba Surabharati, Varanasi – 221001, 2012.
  • Khan A. Muheet-i-Azam. Vol 2. New Delhi: Central Council for Research in Unani Medicine; 2013. p. 788- 90.
  • McClean S. The role of performance in enhancing the effectiveness of crystal and spiritual healing. Med Anthropol. 2013; 32 (1): 61- 74. doi: 10. 1080/ 01459. 740. 2012. 692741. PMID: 232. 06175.
  • Hakim A. Bustanul Mufradat. New Delhi: Idara Kitabu Shifa; 2011. 112 p. Rafiquddin M. Kanzul Advia Mufrada. AMU, Aligarh: University Publication Unit; 1985. p. 389, 390
  • Dubey, Sonali & Kumar, Rohit & Pati, Jayanta & Kiefer, Johannes & Rai, Awadhesh. (2021). Rapid Analysis of Chemical Composition and Physical Properties of Gemstones Using LIBS and Chemometric Technique. Applied Sciences. 11. 6156. 10. 3390/ app- 11136156.
  • Harishankar Pathak, editor, ‘Faladipika’ of Mantreshwara, 2/29, 1st edition, Hindi translation, published by Chaukhamba Surabharati, Varanasi – 221001. 
  • Dr. Vilas Dole, Dr. Parkasha Paranjpe, A textbook of Rasa Shastra, reprinted 2016, Chaukambha Sanskrit Pratishthana, Delhi.
  • National Formulary of Unani Medicine. Part V. New Delhi: Central Council for Research in Unani Medicine; 2008. 
  • Qarabadin Sarkari. New Delhi: Central Council for Research in Unani Medicine. 
  • Dr. Ravinder Angadi, A textbook of Rasa Shastra, Iatro- Chemistry and Ayurveda Pharmaceutics, First edition, Chaukambha Surbharti Parkashana, Varanasi.
  • P. Himsagara Chandra Murthy, Rasa- Shastra, the Mercurial system, Chaukambha Sanskrit series office, Varanasi.
  • Seraj, Snaa & monjur- e- khudha, Mohammad & Aporna, S.A. & Khan, Shamiul & Islam, Farukul & Jahan, Rownak & Mou, S.M. & Khatun, Z. & Rahmatullah, Mohammed. (2011). 
  • Use of semiprecious- stones for preventive and curative purposes: A survey among the traditional medicinal practitioners of the bide community of Bangladesh. American-Eurasian Journal of Sustainable Agriculture. 5. 263- 269.
  • Dr. Damodara Joshi, Rasa Amritam, Chaukambha Sanskrit Sansthana, Varanasi. Pio, Edwina & Kilpatrick, Rob & Le Fevre, Mark. (2017). 
  • Navratna – the nine gems: Illuminating enablers, barriers, and vignettes of South Asian women leaders. South Asian Journal of Business Studies. 6. 00- 00. 10. 1108/ SAJBS- 05- 2016- 0045.
  • Dokras, Uday. (2020). Navaratna (GEM) Therapy.
  • R., Shyam & Aithal, Sreeramana. (2023). Connecting Planetary Gods (Navagrahas) with Gods of Management (9 Ms). 2. 33- 47. 10. 5281/ zenodo. 8112182.
  • Baitar I. Al- Jami Li- Mufradatul Advia waAl- Aghzia. Vol. 2. New Delhi: Central Council for Research in Unani Medicine; 2000. p. 348, 349.
  • Kabiruddin M. Makhzanul Mufradat. New Delhi: Idara Kitabus Shifa; 2014. p. 240, 241.
  • Ghani N. Khazainul Advia. New Delhi: Idara Kitabus Shifa; 2011. p. 765, 766.
  • Bharati Kumari, Shreebhagwan Singh, Umesh Chandra Sinha. Correlation of Ayurveda and Astrology on Health. Ayushdhara. 2022 Sep. 30 [cited 2024 Jan. 25]; 9 (Supp- l1): 86- 9.  https:// ayushdhara. in/ index. php/ Ayushdhara/ article/ view/ 1007
  • Seraj, Snaa & monjur- e- khudha, Mohammad & Aporna, S.A. & Khan, Shamiul & Islam, Farukul & Jahan, Rownak & Mou, S.M. & Khatun, Z. & Rahmatullah, Mohammed. (2011). Use of semiprecious- stones for preventive and curative purposes: A survey among the traditional medicinal practitioners of the bide community of Bangladesh. American-Eurasian Journal of Sustainable Agriculture. 5. 263- 269.
  • Savage A. Spring Books: Precious and semi-precious gems. Br Med J (Clin Res Ed). 1981 Apr 18; 282 (6272): 1295. PMCID: PMC- 1505318.
  • FORBES TR. Chalcedony and childbirth: precious and semi-precious stones as obstetrical amulets. Yale J Biol Med. 1963 Apr; 35 (5): 390- 401. PMID: 13958688; PMCID: PMC- 2604313.
  • Kabiruddin M. Bayaz-i-Kabir. 5thed. Vol. 2. New Delhi, India; Aijaz Publishing House; 1934. p. 426, 430, 452, 453.
  • Ashraf MH. Makhzanul Mufradat Ma Murakkabat wa Khwasul Advia. New Delhi: Aijaz Publishing House; 2011. 
  • Nasir MAH. Mufradat Nasiri Mae Takmila. India: Qaisari Publication. YNM.
  • Anandan AR, Thulasimani. Siddha Materia Medica (Mineral and Animal Kingdom). Department of Indian Medicine and Homeopathy, Chennai; 1985. 
  • National Formulary of Unani Medicine. Part VI. New Delhi: Central Council for Research in Unani Medicine, 2011.  Qarabadin Majidi. Delhi: Alami Printing Press. YNM.

Dr. Sahil Gupta completed his Bachelor of Ayurveda in Medicine and Surgery (B.A.M.S.) and Master’s Degree in Health Administration (MHA) India. He is Registered Ayurvedic Doctor & Vaidya in India having Registration No. 23780. He is the CEO and founder of IAFA. After completing BAMS, Dr. Sahil Gupta started practicing Ayruveda by giving prime importance to allergic disorders management. He became the first Ayurvedic doctor to cure Food Allergies through Ayurveda. Read More About Dr. Sahil Gupta.

Was this Page Helpful?

    Read More Articles

    Contact IAFA Ayurveda - WhatsApp Live Chat