World's 1st Trusted Ayurvedic Allergy Institute

On This Page

Firoza Stone (Turquoise – Pairojaka) – The Astrological and Ayurvedic Benefits

Introduction

Turquoise is an opaque, blue-to-green mineral that is a hydrous phosphate of copper and aluminum, with the chemical formula CuAl6 (PO4)4 (ОН)82O. It is rare and valuable in finer grades and has been prized as a gem and ornamental stone for thousands of years owing to its unique hue. In recent times Turquoise, like most other opaque gems, has been devalued by the introduction of treatments, imitations, and synthetics onto the market. The substance has been known by many names, but the word ‘turquoise’, which dates to the 16th century, is derived from an Old French word for Turkish, because the mineral was first brought to Europe from Turkey, from the mines in historical Khorasan Province of Persia. Pliny the Elder referred to the mineral as Callais, the Iranians named it “pirouzeh” and the Aztecs knew it as ‘chalchihuitl’.Perojaka is distributed in various parts of the world, sky- sky-blue turquoise from Iran and a greener variety from Tibet are famous. Other localities include Chile, Australia, Mexico, Turkstan, England, and the USA. In Ayurvedic classical texts, two varieties of Perojaka are mentioned Bhasmanga and Harita and perojaka is mentioned to be used for detoxification of all types of toxins in the body.

फ़िरोज़ा एक अपारदर्शी, नीले से हरे रंग का खनिज है जो तांबे और एल्यूमीनियम का एक जलीय फॉस्फेट है, जिसका रासायनिक सूत्र CuAl6 (PO4)4 (ОН)82O है। यह दुर्लभ और बेहतर ग्रेड में मूल्यवान है और इसकी अनूठी छटा के कारण हजारों वर्षों से इसे एक रत्न और सजावटी पत्थर के रूप में महत्व दिया गया है। हाल के दिनों में फ़िरोज़ा, अधिकांश अन्य अपारदर्शी रत्नों की तरह, बाजार में उपचार, नकल और सिंथेटिक्स की शुरूआत के कारण अवमूल्यन कर दिया गया है। इस पदार्थ को कई नामों से जाना जाता है, लेकिन ‘फ़िरोज़ा’ शब्द, जो 16वीं शताब्दी का है, तुर्की के लिए एक पुराने फ्रांसीसी शब्द से लिया गया है, क्योंकि खनिज पहली बार ऐतिहासिक खुरासान की खदानों से तुर्की से यूरोप लाया गया था। फारस प्रांत. प्लिनी द एल्डर ने खनिज को कैलाइस के रूप में संदर्भित किया, ईरानियों ने इसे “पिरोज़ेह” नाम दिया और एज़्टेक्स ने इसे ‘चलचिहुइटल’ के रूप में जाना।

Ayurvedic View of Pairojaka / Firoza / Perojam / Haritashm / Bhasmanga / Harinmani (Turquoise / Terchesins)

आयुर्वेदीय संहिताओं एवं ज्योतिषीय ग्रन्थ बृहत्संहिता में पिरोजा का  उल्लेख  नहीं  मिलता  है।  आनन्दकन्द एवं आयुर्वेदप्रकाश में इस उपरत्न का विशेष वर्णन मिलता है।  यह हरिताभ  नीलवर्ण का अपारदर्शक पाषाण खनिज है। ताम्र के कारण इसमें नीलिमा एवं  लौहे के कारण हरितवर्ण होता है। धूप और गर्मी से इसका वर्ण विकृत हो जाता यही।  रस्यानिक दृष्टि से यह एल्युमिनियम, लौह एवं ताम्बे का फास्फेट होता है।  ये हाइड्रोक्लोरिक  अम्ल में घुलनशील होता है। इसे काटकर गोल अथवा लम्बा गोल आकर का बनाया जाता है  इसे स्वर्णाभूषणों में जड़कर धारण किया जाता है।  ये केतु ग्रह को प्रसन्न करता है। पिरोजा जल संयोजित एल्युमिनियम फॉस्फेट है। इसके सहयोगी खनिजों  में लिमोनाइट प्रमुख है। इसके वर्ण के फीके हो जाने पर अमोनिया में डुबोकर ग्रीज  लगाने से पुन: नीलाभ हरित मिश्रित वर्ण का हो जाता है। फिरोजा का रत्न ईरान से तुर्की होकर यूरोप में भेजा जाता था और टर्की में भी अत्यधिक मात्रा में पाया जाता था । इसलिए १६५२ ई. में श्रीटामस निकल्स ने सर्वप्रथम इसे तुर्की का पत्थर नामक संज्ञा दी थी |

There is no mention of turquoise in Ayurvedic classics and astrological text Brihat Samhita. A special description of this gemstone is found in Anandkand and Ayurveda Prakash. It is a greenish-blue opaque stone mineral. It has a blue color due to copper and a green color due to iron. Its color gets distorted due to sunlight and heat. From a chemical point of view, it is a phosphate of aluminum, iron, and copper. It is soluble in hydrochloric acid. It is cut into a round or long round shape and is worn by setting it in gold jewelry. This pleases planet Ketu (Ketu Greha). Turquoise is water-combined aluminum phosphate. Limonite is prominent among its associated minerals. When its color becomes dull, it becomes a blue-green mixed color again by dipping it in ammonia and applying grease. This pleases planet Ketu. Turquoise is water-combined aluminum phosphate. Limonite is prominent among its associated minerals. When its color becomes dull, it becomes a blue-green mixed color again by dipping it in ammonia and applying grease. The turquoise gemstone was sent to Europe from Iran via Turkey and was found in large quantities in Turkey also. Therefore, in 1652 AD, Sri Thomas Nichols first named it as Turkey’s Stone.

Astrological View of Pairojaka / Firoza / Perojam / Haritashm / Bhasmanga / Harinmani (Turquoise / Terchesins)

उपरत्न वर्ग के खनिजपाषाण में काठिन्य, चमक, पारदर्शकता रत्नो  की अपेक्षा कम गुणवाले होते है। इनका मूल्य भी कम होता है। अतः इन्हें उपरत्न  कहा  जाता है। उपरत्नों की संख्या में मतभिन्नता है- आनन्दकन्दकार ने 9 उपरत्न माने है।  जबकि आयुर्वेदप्रकाशकार ने 15 उपरत्न माने है। बृहद योगतरंगिणीकार ने 4 ही उपरत्न  माने है। रसतरंगिणीकार ने छः उपरत्न माने है। आनन्दकन्दकार ने विमल, सस्यक, कान्त एवं तारकान्त को भी उपरत्न  में शामिल कर दिया है। बृहत् योग तरंगिणीकार ने मुक्ता प्रवाल को भी उपरत्न  वर्ग में मानकर और भी भ्र्म पैदा किया है।  आयुर्वेद प्रकाशकार ने ५ प्रचलित उपरत्नो के अतिरिक्त १० नए उपरत्न को इस वर्ग में शामिल किया है परन्तु सबसे अधिक रस तरंगिणी का मत ही प्रचलित है। 

Reference- आ. क. क्रि. व १/ १२

सूर्यकान्तश्चन्द्रकान्तस्तारकान्तस्तु कान्तक:  

वैक्रान्तश्च नृपावर्तस्सस्यको विमला तथा।

पैरोजश्च नवैतानि ह्युपरत्नानि निर्दिशित।। 

Reference: आयुर्वेद प्रकाश ५/ ६- ८

वैक्रान्तः सूर्यकान्तश्च चन्द्रकान्तश्तथैवं :  

राजावर्तो लालसंज्ञ: पैरोजाख्यस्तथा अपर: ।। 

मुक्ता शुक्तिस्तथा शेख: कर्पूरशमा अथ काचजा:  

मणयो नीलपीताद्या हन्ये विषहराश्च ये।। 

वह्यादिस्तम्भका ये ते सर्वे हि परीक्षकै:  

गणिता द्लुपरत्नेषु मणयो लोकविश्रुता: ।। 

Reference: बृहत् योग तरंगिण ४३/ ८२

मुक्ता विद्रुम शंखाश्व राजावर्तस्तथैव च। उपरत्नानि चत्वारि कथितानि मनीषिभिः।।  

Reference: Rasa Trangini. 23/ 154

वैक्रान्त सूर्यकान्त चन्द्रकांतो नृपो पल |

पेरोजकञ्च स्फटिकम क्षुद्र रत्न गणो हव्यम।।

There are six Uparatna as per Rasa Trangini 

  • Vaikranta (Fluorite/ Tormaline) 
  • Suryakanta (Spinel) (Na, O, CaO, Al, 2SiO)
  • Candrakant (Moonstone) (K, Si, O, Na, Al, Si)
  • Raja-varta (Lapis Lazuli) (Na, Ca), (Al, SiO) (S, SO, Cl)
  • Pairojaka (Turquoise)
  • Sphatika (Rock crystal)

A few gems are also added to the list of Uparatna by NCISM and they mention a total 13 number of Upratnas. They are as follows:

  • Vaikranta (Fluorite/ Tormaline) 
  • Suryakanta (Spinel) (Na, O, CaO, Al, 2SiO)
  • Candrakant (Moonstone) (K, Si, O, Na, Al, Si)
  • Raja-varta (Lapis Lazuli) (Na, Ca), (Al, SiO) (S, SO, Cl)
  • Pairojaka (Turquoise)
  • Sphatika (Rock crystal)
  • Putika (Peridote)
  • Trinkanta (Amber, Succinum)
  • Rudhiram/ rudhir Putika (Carnelion)
  • Palankam/ Palakam (Onyx, CaSO4, 2H2O)
  • Vyomasma (Jade)
  • Kosheyaashm
  • Sougandhik
Ayurveda Classes and Courses Online

Upratna is Mentioned in Different Ayurvedic Literature

Upratna name/ semi-precious stoneAayurveda ParkashaAanand KandBrihat Yog TranginiRasa Trangini
Suryakanta+++
Chandrakant+++
Vaikrant+++
Rajavart++++
Perojak+++
Saphatik+
Taarkaant+
Kaant+
Sasyak+
Vimal+
Laalmani+
Mukta Shukti+
Shankh ++
Karpurashma+
Kaachmani+
Neelmani +
Peetmani +
Vishhar Mani +
Agni Stambhak Mani+
Jal Stambhak Mani++
Mukta +
Parvala+
Dr. Sahil Gupta - Famous Ayurvedic Allergy Specialist

Have A Health Issue?

Consult Online

- Dr. Sahil Gupta (B.A.M.S., M.H.A.)

Ayurvedic Allergy Specialist
CEO & Founder of IAFA®

Consult Now

Properties of Semi-Precious Stone (Upratna)

Name Chemical compositionStructureHardness Specific GravityRefrective indexDouble refraction
Fluorite (Vaikrant)CaF2Cubic43.181.43None
Spinel (Suryakant)MgAl2O4Cubic83.601.71- 1.73None
Moonstone (Chandrakant)KAlSi3O8Monoclinic62.571.52- 1.530.005
Lapis Lazuli (Rajavart)(Na, Ca)8, (Al, Si12 O24 (SO4) Cl2 (OH)Various5.52.801.50None
Turquoise (Perojaka)Cu Al6 (PO4)4 (OH)8 5 H2OTriclinic62.801.61- 1.650.004
Rock Crystal (Sphatika)SiO2Trigonal72.651.54- 1.550.009
Jade (Vyomashma)NA (AL, FE) Si2O6Monoclinic73.331.66- 1.680.012
Onyx (Palanka)SiO2Trigonal72.611.53- 1.540.004
Carnelian (Rudhiram, Akeek)SiO2Trigonal72.611.53- 1.540.004
Peridot (Putika)(Mg, Fe)2 SiO4Orthorhombic6.53.341.64- 1.690.036
Amber (Trinkant)C6 H16 OAmorphous2.51.081.54- 1.55N/ A

Pairojaka / Firoza / Perojam / Haritashm / Bhasmanga / Harinmani (Turquoise / Terchesins) Upratna (Semi-Precious Stone) Indicated as a Substitute for Precious Stone as per Astrological Science to Nullify the Maleficent Effect of Various Planets (Grahas) and to Treat the Roga (Disorders) Related to that Particular Planet.

Not everyone is affluent, and the affordability of precious stones remains beyond the means of many individuals. In light of this, semiprecious stones emerge as a viable and more accessible alternative. These gemstones, while not as costly as their precious counterparts, possess unique and appealing qualities. Embracing semiprecious stones allows a broader spectrum of people to enjoy the beauty and symbolism associated with gemstones without the financial strain associated with acquiring precious ones.

Planet Precious Gem UsedSubstitute Semi-Precious Stone
Sun (Surya)Manikya (Ruby)
Moon (Chandra)Mukta (Pearl)
Mars (Mangala)Vidruma (Coral)
Mercury (Buddha)Markat (Emerald)
Jupiter (Guru)Pushapraga (Topaz)Turquoise
Venus (Shukra)Vajra (Diamond)
Saturn (Shani)Neelam (Blue sapphire)
Rahu Gomeda (Hessonite)
Ketu Vaidurya (Cat’s eye stone)

Diseases Induced by Maleficent Effects of Planets (Greha Roga) or Diseases Induced by Dushkarma (Sinful Deeds) Done by the Rogi (Patient) i.e Karma Vipaka Siddhanta

Planet Diseases Caused
Sun Shoth (Inflammation in the body), Apsmar (Epilepsy), Paitikavikara, Jawara (Fever), Diseases of the eye, skin, and bone, rational fears, Bites from poisonous reptiles like snakes, weakening the digestive system, and constipation.
Moon Sleep diseases such as Anidra (insomnia) or somnambulism (sleepwalking), Kaphaj Kasa, Atisara, Alsaya, Agnimandya (Loss of appetite), Aruchi (Disinterest in food), Kamala (Jaundice), Chitudvega, Grehani, Hydrophobia, Fear of animals with horns, Problems concerning women, Hallucinations
MarsTrishna (Excessive thirst), Bilious disorders, Flatulence, Excessive fear of fire, Gulma, appendicitis, Kustha (Leprosy), eye disorder, Apsmar (Epilepsy), Rakta Vikara, Majja Vikar (Bone marrow diseases), Kandu (Itching), Ruksha Twaka (Rough skin).
MercuryLack of self-confidence, Gala Rog (Throat problems like goiter, etc.), Nasagata Rog (Nose Diseases), Vata- Kaphaj Roga, Cold and Cough, Flatulence, Poisoning. Twaka Dosha (Skin diseases), Vicharchika. Jaundice.
Jupiter Gulma, Appendicitis, Karan Vedna (an ear disease), Sanyas.Frequent litigation, Problems with friends, parents, and relatives.
Venus Pandu (Anaemia), Netra Roga (Disorders of the eye), Flatulence, Cough, Mutrakrich (Urinary disease), Prameha (Diabetes), Syphilis, Shukra-Vyapati (Low sperm count), Impotence, Dryness of Mouth, Constipation, Irrational fears.
Saturn Flatulence, Cough, Pain in the legs, Excessive Fatigue, Illusion, Daha (Excessive heat in the body), Mental shocks, Personal calamities, and Accidents causing temporary or lasting wounds.
Rahu Heart diseases such as an attack, Shotha (Inflammation), Kushtha (Leprosy), illusions, hallucinations, disease due to poisoning, excessive hurt, and wounds.
Ketu Unknown mysterious diseases, cannot be easily found by doctors.

Types of Pairojaka / Firoza / Perojam / Haritashm / Bhasmanga / Harinmani (Turquoise / Terchesins) as per Astrology

Reference: Ayurved Parkash 5/ 148

पेरोजम हरिताश्म भस्मांग हरितम द्विविधा |

Two varieties of Perojaka are mentioned: 

  • Bhasmanga (Ash colored)
  • Harita (Green colored)

Types of Pairojaka / Firoza / Perojam / Haritashm / Bhasmanga / Harinmani (Turquoise / Terchesins)

There are several types of Phiroja/ perojaka, each distinguished from each other by its unique characteristics, color, and origin. Common types of Perojaka/ Peroja/ Perojam/ Haritasma/ Bhasmanga/ Harinmani (Turquoise/ Terchesins) are as follows:

Persian Turquoise: The Persian variety of Perojaka is the finest quality of turquoise and has a vivid blue color. This variety of Perojaka comes from mines in Iran (formerly Persia) and is highly valued for its minimal matrix and intense blue hue.

Sleeping Beauty Turquoise: The Sleeping Beauty Perojaka is distributed in Arizona, USA, and is famous for its bright robin’s egg blue color. This variety has a lack of matrix, and it is very popular in jewelry due to its clean, uniform appearance.

Kingman Turquoise: From the Kingman Mine in Arizona, USA., the Kingman variety is mined. This variety of Perojaka is widely used in Native America due to its prominent matrix pattern and different range of colors, including blue, green, and blue-green.

Chinese Turquoise: One of the significant producers of Perojaka is China which produces stones ranging from blue to green. The Perojaka that we get from China has intricate matrix patterns and is used to make traditional jewelry.

Bisbee Turquoise: The Bisbee Paeroja is mined in Bisbee, USA, Arizona, and is famous for its rich blue and green hues, which also include striking matrix patterns. This variety of Perojaka is rare but highly collectible due to the closure of the Bisbee Mine.

Mexican Turquoise: The major source of Peroja is Mexico, where mines produce Perojaka Upratna in various matrix patterns and colors. The Perojaka collected from Mexico has blues, greens, and even purple hues.

Tibetan Turquoise: The Perojaka which is famous for its deep blue color and intricate matrix patterns is found in Tibet and surrounding regions and used in traditional Tibetan jewelry and religious artifacts.

Synonyms of Pairojaka / Firoza / Perojam / Haritashm / Bhasmanga / Harinmani (Turquoise / Terchesins)

Reference: Rasa Trangini. 23/ 208

पेरोजकञ्च पेरोजम रसज्ञे: परिकीर्तितं। 

भस्मांग हरितम चेति द्विविधं तत परिकीर्तितं।।

Perojaka and Peroja are the two words with which the mineral drug is identified. Its synonyms are Peroj, Perojaka, Haritashma, Harinmani and Visharti.

Names of Pairojaka / Firoza / Perojam / Haritashm / Bhasmanga / Harinmani (Turquoise / Terchesins) in Different Languages

  • Piroja, Peroja, Phiroja (Hindi)
  • Perojaka, Haritasma, Perojam, Harinmani (Sanskrit)
  • Peroj (Marathi)
  • Piroja (Gujrati)
  • Phirojaj (Pharsi)
  • Turquoise (English)
  • Terchesins (Latin)

Formation of the Pairojaka / Firoza / Perojam / Haritashm / Bhasmanga / Harinmani (Turquoise / Terchesins)

The formation of Perojaka involves the interaction of copper-rich water with various types of rocks that evolved millions of years ago through a complex geological process. The process of formation of Perojaka is as follows:

Host Rock Formation: Where specific geological conditions are present in arid regions, Perojaka is formed. The rocks that are typically porous and permeable and allow groundwater to flow through them in such type of rock Perojaka formed.

Presence of Copper: For turquoise formation, the presence of copper in the rocks is crucial. Chalcopyrite or azurite, the rocks that contain copper minerals break down over time due to weathering and chemical reactions gradually to form Perojaka.

Hydrothermal Activity: The rocks become enriched with dissolved copper ions when groundwater percolates through porous and fractured rocks. This is the hydrothermal activity that is responsible for Perjaka formation due to the alteration of the host rocks and the deposition of copper minerals in cavities or fractures.

Reaction with Aluminum and Phosphorus: The formation of Perojaka occurs when copper-rich water that forms during hydrothermal activity interacts with aluminum and phosphorus minerals present in the host rocks. On the specific geological conditions, the exact chemical reactions occur which are complex and result in Perojaka formation.

Coloration: The presence of copper ions within its crystal structure is responsible for the vibrant green and blue color of the Peojaka, along with other elements such as manganese, and iron, which also contribute to the color variations observed in Perojaka.

Crystallization and Hardening: The Perojaka Upratna gradually forms within the fractures and cavities of the host rocks over time as the mineral deposition occurs in the rock during hydrothermal activity. The crystals eventually solidify, harden, and result in the formation of Perojaka deposits.

Mining and Extraction: The Perojaka is mined through various methods, like surface mining or underground mining once their deposits are identified. The extracted Perojaka Upratna is then processed and prepared for use in jewelry, and other applications.

Reference of Pairojaka / Firoza / Perojam / Haritashm / Bhasmanga / Harinmani (Turquoise / Terchesins)

Reference of Pairojaka / Firoza / Perojam / Haritashm / Bhasmanga / Harinmani (Turquoise / Terchesins)
Ayurvedic Books on Allergies and Child Health

History of Pairojaka / Firoza / Perojam / Haritashm / Bhasmanga / Harinmani (Turquoise / Terchesins)

आयुर्वेदीय संहिताओं एवं बृ० संहिता आदि ज्योतिष के ग्रन्थों में पेरोजका का  कोई वर्णन नहीं मिलता है। किन्तु सम्भवत: १६वीं शताब्दी के बाद के ग्रन्थ  आनन्दकन्द में पिरोजा का विस्तृत उल्लेख है। तत्सामयिक ग्रन्थ आयुर्वेदप्रकाश भी इस उपरत्न का विशेष वर्णन है। इन सबों के साथ ही यह भी कहना अनुचित होगा कि यह उपरत्न इस्लामी आक्रमण के बाद ही अपने देश में आया है।

There is no description of Perozka in the astrological texts like Ayurvedic Samhitas and Brihat Samhitas etc. But probably there is a detailed mention of Piroja/ Perojakain Anandkanda, a book written after the 16th century. The contemporary book Ayurveda Prakash also has a special description of this gemstone. Along with all this, it would also be unfair to say that this precious stone came to our country only after the Islamic invasion.

Characteristics of Pairojaka / Firoza / Perojam / Haritashm / Bhasmanga / Harinmani (Turquoise / Terchesins)

Even the finest of turquoise is fracturable, reaching a maximum hardness of just under 6 or slightly more than window glass. Characteristically a cryptocrystalline mineral, turquoise rarely forms single crystals and all of its properties are highly variable. Its crystal system is proven to be triclinic via X-ray diffraction testing. With lower hardness comes lower specific gravity (2.60- 2.90) and greater porosity: These properties are dependent on grain size. The luster of turquoise is typically waxy to subvitreous, and transparency is usually opaque but may be semi-translucent in thin sections. Color is as variable as the mineral’s other properties, ranging from white to a powder blue to a sky blue, and from a bluegreen to a yellowish green. The blue is attributed to idiochromatic copper while the green may be either the result of iron impurities (replacing aluminum) or dehydration.

The refractive index (as measured by sodium light, 589.3 nm) of turquoise is approximately 1.61 or 1.62; this is a mean value seen as a single reading on a gemological refract meter, owing to the almost invariably polycrystalline nature of turquoise. A reading of 1.61-1.65 (birefringence- 0.040, biaxial positive) has been taken from rare single crystals. An absorption spectrum may also be obtained with a hand-held spectroscope, revealing a line at 432 nanometers and a weak band at 460 nanometers (this is best seen with strong reflected light). Under long-wave ultraviolet light, turquoise may occasionally fluoresce green, yellow, or bright blue; it is inert under short-wave ultraviolet light and X-rays.

Turquoise is insoluble in all acids except heated hydrochloric acid. Its streak is a pale bluish white and its fracture is conchoidal, leaving a waxy luster. Despite its low hardness relative to other gems, turquoise takes a good polish.

Turquoise may also be peppered with flecks of pyrite or interspersed with dark, spidery limonite veining.

Composition- Cu Al6 (PO4) 4H2O

Crystallization- Triclinic, Pinnacoidal. 

Habit- Usually massive, often in small veins or stringers. 

Color- Shades of blue or green

Luster- Crystals are vitreous, massive varieties are waxy

Streak- White to very pale green.

Diaphaneity- Massive varieties are translucent to opaque. Crystals are transparent. 

Cleavage- Crystals have two directions, perfect and massive, none

Fracture- small conchoidal to uneven.

Elasticity- brittle

Hardness- 5 to 6

Specific gravity- 2.6 to 2.9

Fusibility- infusible

This is soluble in Hydrochloric acid.

पिरोजा का रज स्थायी नहीं होता है। कुछ समय के बाद यह अनपेक्षित हरे रंग में बदलने लगता है। इस पर पसीना, अग्रि, सूर्यप्रकाश एवं अन्य प्रकार की उष्मा का बुरा प्रभाव शीघ्र पड़ता है और इसका रंग फीका पड़ने लगता है। यह खनिज रन्ध्रमय होता है अत: यह सहज ही मैला एवं चिकटा हो जाता है। रत्नविदों का कहना है कि इस तरह फीकी हुए पिरोजा को अमोनियाँ में डुबोकर ग्रीज़  लगाने से पुन: नीलाभ हरित मिश्रित वर्ण का सुन्दर हो जाता है। पिरोजा के रंग को सुन्दर बनाने के लिए कभी-कभी नीले घोलों में भी रंगा  जाता है यह लवणाम्ल में घुलनशील है। इसे ताम्र तथा अल्यूमिनियम फास्फेट कहना अधिक उच्चित होगा।

पिरोजा गर्म हाइड्रोक्लोरिक एसिड को छोड़कर सभी एसिड में अघुलनशील है। इसकी लकीर हल्के नीले रंग की सफेद होती है और इसका फ्रैक्चर शंकुधारी होता है, जो मोम जैसी चमक छोड़ता है। अन्य रत्नों की तुलना में इसकी कम कठोरता के बावजूद, फ़िरोज़ा अच्छी पॉलिश लेता है।  पिरोजा  को पाइराइट के टुकड़ों के साथ मिलाया जा सकता है या गहरे, स्पाइडररी लिमोनाइट शिराओं के साथ मिलाया जा सकता है।

Pairojaka / Firoza / Perojam / Haritashm / Bhasmanga / Harinmani (Turquoise / Terchesins) Aayu (Lifespan of Turquoise)

Reference: Rasa Jala Niddhi. 3/ 4, Ratna Dhatu Vigyana

न जरां यान्ति रत्नानि मौक्तिकं विद्रुमं बिना।

Though the gemstones of mineral origin are eternal, the Exception is Mukta (pearl) which has a limited lifespan, and also Vidruma- coral. After a few years, it grows old and eventually loses its character, but other gemstones are eternal, but they also need to be maintained and revitalization of them is necessary to get maximum benefits.

आयु- कुछ समय पश्चात्‌ काल प्रभाव से प्रवाल, मुक्ता खराब हो जाते है। किन्तु अन्य रत्नों पर काल का प्रभाव नहीं होता है।

Pairojaka / Firoza / Perojam / Haritashm / Bhasmanga / Harinmani (Turquoise / Terchesins) Aayu after Dharana (Lifespan of Turquoise after Assumption)

It is believed by scholars that the following gemstones have effectiveness Diamond life span is 10 years, Ruby/ Manik’s 12 years, Yellow Sapphire/ Pukhraj’s lifespan is 15 years, Blue Sapphire/ Neelam’s life span is 15 years, Emerald/ Panna’s life is 12 years, Coral, Hessonite Garnet and Cat’s Eye’s lifespan is 3 to 5 years, Natural Pearl life span is 12 years. 

All the other Uparatnas and other semi-precious alternate gemstones are said to have a lifespan of 3 years.

Over some time, when gemstones i.e. precious and semi-precious stones are worn these gems start to get scratches on their surface, and even start losing their high polishing due to which sun rays stop passing through the gems (Ratna) When these precious gems are wear for a long period a greasy layer starts to deposit on their surface which is probably a mixture of lubricants, oils and other materials that a wearer come in contact with it. As the deposition starts to get thicker with time, it even blocks the rays (different wavelengths) that these stones receive from the planets to give effect. Although gemstones are forever yes, their effectiveness for astrological purposes falls and therefore proper and regular maintenance is important.

Therefore, we can consider the life span of semi-precious stone Perojaka/ Peroja/ Perojam/ Haritasma/ Bhasmanga/ Harinmani (Turquoise/ Terchesins) to be 3 years.

Pairojaka / Firoza / Perojam / Haritashm / Bhasmanga / Harinmani (Turquoise / Terchesins) Used for Different Zodiac Signs (Rashi)

Perojaka uses for different zodiac signs/ Rashi are as follows:

Sagittarius: Perojaka when worn by the individual with Sagittarius zodiac sign believed to resonate with the adventurous and optimistic nature and promote inner wisdom. It also enhances their sense of wanderlust on wearing.

Pisces: For the individual with Meena Rashi (Pisces zodiac sign), turquoise is believed to encourage spiritual growth, and maintain emotions, helping them navigate their intuitive tendencies.

Scorpio: Perojaka Upratna is said to empower Vrishchika Rashi individuals with its protective qualities and promote inner strength and resilience.

Occurrence or Places of Availability of Pairojaka / Firoza / Perojam / Haritashm / Bhasmanga / Harinmani (Turquoise / Terchesins)

This is found in Turkistan. This is called Turquoise because Sir Thomas Nicolas had first called it Turquey stone as he found it to be abundant in Turkey. In Sanskrit, Turkistan is known as Peroja Desa and hence the name Perojaka. It is also available in Persia, Sinai, and Arizona. The Khurasani Turquoise from Persia is considered the best.

यह तुर्किस्तान में पाया जाता है। इसे फ़िरोज़ा इसलिए कहा जाता है क्योंकि, सर थॉमस निकोलस ने इसे सबसे पहले टर्की पत्थर कहा था क्योंकि उन्होंने पाया था कि यह तुर्की में प्रचुर मात्रा में पाया जाता है। संस्कृत में, तुर्किस्तान को पेरोजा देसा के नाम से जाना जाता है और इसलिए इसका नाम पेरोजाका पड़ा। यह फारस, सिनाई, एरिज़ोना में भी उपलब्ध है। फारस का खुरासानी फ़िरोज़ा सर्वोत्तम माना जाता है।

Purification of Pairojaka / Firoza / Perojam / Haritashm / Bhasmanga / Harinmani (Turquoise / Terchesins)

The Shodhana (purification) method of Perojaka is similar to the method of the Shodhana of the Rajavart. Below are the methods of purification (Shodhana) of the Rajavart, using Perojaka instead of Rajavart to get Rajavart Bhasma.

Reference: Rasa Tarangini. 23/ 193

गव्य मूत्र: क्षारो निम्बुक द्रव योगत:  

स्विनौ नृपोपलो यांम शुद्दिमायत्य उत्तमां। 

The roughly pounded Rajavarta is tied in a Pottali hung in Dolayantra containing equal ratios of Gomutra, Nimbu Swarasa and Yavaksara as liquid media and subjected for 3 hours (one yama) of Swedana. Later the drug is washed, dried and stored in an airtight container as Suddha Rajavarta for further pharmaceutical use.

कुचले गए राजवर्त को दोला  यंत्र में लटकाए गए पोटलि में बांधा जाता है, जिसमें तरल पदार्थ  के रूप में गोमूत्र, निम्बू स्वरस और यवक्षार के बराबर अनुपात में लेते  हैं और स्वेदन के लिए 3 घंटे (एक यम) रखते  होते हैं। बाद में राजवर्त को धोया जाता है, सुखाया जाता है और आगे औषधीय  उपयोग के लिए शुद्ध राजावार्त के रूप में एक एयरटाइट कंटेनर में संग्रहीत किया जाता है।

Reference: Rasa Tarangini. 23/ 194

निम्बुक अम्ल समायुक्त: जल: क्षार संयुत: 

नृपोपल: परस्विनौ विशुध्यति संशय।।

The roughly pounded Rajavarta is tied in a Pottali hung in Dolayantra containing equal ratios of Nimbu Swarasa, Yavaksara and water media and subjected for 3 hours (one Yama) of Swedana. Later the drug is washed, dried and stored in an airtight container as Shuddha Rajavarta for further pharmaceutical use.

मोटे तौर पर कुचले गए राजवर्त को दोलायंत्र में लटकाए गए पोट्टालि में बांधा जाता है, जिसमें निम्बू स्वरस, यवक्षार और जल को समान मात्रा में डालकर, बाद में   स्वेदन के लिए  3 घंटे (एक यम)  तक रखा जाता  है। बाद में राजवर्त  को धोया जाता है, सुखाया जाता है और औषधीय  उपयोग के लिए शुद्ध राजावार्त के रूप में एक एयरटाइट कंटेनर में संग्रहीत किया जाता है।

Reference: Rasa Tarangini. 23/ 195

शिरीष पुष्प स्वरसे: स्वेदितस्तु नृपोपल:  

दोला यंत्री याम मात्रम शुद्दिमायत्य उत्तमां। 

The roughly pounded Rajavarta is tied in a Pottali hung in Dolayantra containing Sirisa Puspa Swarasa as liquid media and subjected for 3 hours (one yama) of Swedana. Later the drug is washed, dried, and stored in an airtight container as Suddha Rajavarta for further pharmaceutical use.

मोटे तौर पर कुचले गए राजवर्त को  दोला यंत्र में लटकाए गए पोटालि में बांधा जाता है, जिसमें तरल मीडिया के रूप में शिरीष  पुष्प स्वरस होता है और स्वेदन के लिए 3 घंटे (एक यम) रखा जाता है । बाद में औषध  को धोया जाता है, सुखाया जाता है और आगे के फार्मास्युटिकल उपयोग के लिए शुद्ध राजावार्त के रूप में एक एयरटाइट कंटेनर में संग्रहीत किया जाता है।

Incineration (Marana) of Pairojaka / Firoza / Perojam / Haritashm / Bhasmanga / Harinmani (Turquoise / Terchesins)

The Marana (incineration) method of Perojaka is similar to the method of the Marana of the Rajavart. Below is the Marana of the Rajavart,  use Perojaka instead of Rajavart to get Rajavart Bhasma.

Reference: Rasa Tarangini. 23/ 186

लुङ्गाम्बु गंध कोपेतो राजावर्तो विचूर्णित: 

पुटना  सप्त वारेन रजवरतो मृतो भवेत।।

The required quantity of Shuddha Rajavarta is taken in a clean Khalva Yantra. It is added with an equal ratio of Shuddha Gandhaka and triturated to obtain a homogenous mixture. This mixture is added with the required quantity of Nimbu Swarasa, triturated thoroughly, and later dried under hot sun. The dry powder obtained is enclosed in Sarava Samputa and subjected to one Gajaputa. This entire procedure is repeated for times to obtain properly prepared Rajavarta Bhasma.

शुद्ध राजवर्त  की आवश्यक मात्रा एक स्वच्छ खल्व यंत्र में ली जाती है। इसमें शुद्ध गंधक को समान अनुपात में मिलाया जाता है और एक समरूप मिश्रण प्राप्त करने के लिए इसे पीसा जाता है। इस मिश्रण में आवश्यक मात्रा में निम्बू स्वरस मिलाया जाता है, अच्छी तरह से मसला जाता है और बाद में तेज धूप में सुखाया जाता है। प्राप्त सूखा पाउडर सारावा संपुटा में संलग्न है और एक गजपुटा के अधीन होता है । उचित रूप से तैयार राजवर्त भस्म प्राप्त करने के लिए यह पूरी प्रक्रिया कई बार दोहराई जाती है।

Pairojaka / Firoza / Perojam / Haritashm / Bhasmanga / Harinmani (Turquoise / Terchesins) Properties: (Bhasma / Incineration)

Reference: Rasa Tarangini. 199- 210

पेरोजक सु  तुवरं मधुरं  सुदीपनं। 

शूल दूषि विषघ्नञ्च चाराचर विषापहम।। 

Perojaka Bhasma possesses Kashaya and Madhura Rasa. Its internal use improves the appetite and cures all types of Udara Shula. It nullifies the influence of all types of Sthavara and Jangama Visha (poison) over the body.

पेरोजका भस्म में कषाय और मधुर रस होता है। इसके आंतरिक उपयोग से भूख बढ़ती है और सभी प्रकार के उदार शूल ठीक हो जाते हैं। यह शरीर पर सभी प्रकार के स्थावर और जंगम विष (जहर) के प्रभाव को खत्म कर देता है।

Reference: Ayurved Parkash. 5/ 148- 149

पेरोजम सु कष्याम स्यान  मधुरं दीपनं  सरम। 

स्थावरं  जांगम  चैव संयोग अपि यद् विषम। 

तत सर्वं  नाश्येत शीघ्रम मुलभूत आदि दोषजं।।

Perojaka Bhasma possesses Kashaya and Madhura Rasa. It has Agni Deepana and Sara Guna. It nullifies the influence of Sthavara, Jangama and Samyoga (Kritrima) Visha and is a good laxative.

पेरोजका भस्म में कषाय और मधुर रस होता है। इसमें अग्नि दीपन और सारा गुण हैं। यह स्थावर, जंगम और समयोग (कृत्रिमा) विष के प्रभाव को ख़त्म करता है और एक अच्छा रेचक है।

Dosage and Usage of Pairojaka / Firoza / Perojam / Haritashm / Bhasmanga / Harinmani (Turquoise / Terchesins)

1/ 2 Ratti to 1 Ratti (62 to 125 mgs) is the general dosage of the Perojaka Bhasma. However, the dosage of the Perojaka Bhasma has to be finalized after thorough consideration of all the relevant factors that affect the dosage like Atura Bala, Vyadhi Bala, etc.    

Anupana (Adjuvant / Vehicle) for Use of Pairojaka / Firoza / Perojam / Haritashm / Bhasmanga / Harinmani (Turquoise / Terchesins)

Honey, clarified butter, or any other suitable medicine.

अनुपान- मधु, घृत  

Important Formulation of Pairojaka / Firoza / Perojam / Haritashm / Bhasmanga / Harinmani (Turquoise / Terchesins)

Perojaka Bhasma

Recent Research on Pairojaka / Firoza / Perojam / Haritashm / Bhasmanga / Harinmani (Turquoise / Terchesins)

  • Stubna, Jan & Andrasiova, Alzbeta. (2021). Turquoise from Armenia. The Journal of Gemmology. 37. 454- 456. 10. 15506/ JoG. 2021. 37. 5. 454.
  • Blumentritt, Féodor & Fritsch, Emmanuel & Stephant, N. & Karampelas, Stefanos & Delaunay, Aurelien & Caplan, Candice & Notari, Franck. (2023). A New Reconstructed Turquoise Imitation Composed of Turquoise Powder with a PMMA (Acrylic) Binder. The Journal of Gemmology. 38. 443- 446. 10. 15506/ JoG. 2023. 38. 5. 443.
  • Kumar, Vivek. (2016). STUDY ON TURQUOISE AND BRIGHT SKY-BLUE APPEARING FRESHWATER BODIES. International Journal of Geology, Earth & Environmental Sciences. 6. 119- 128. 10. 5281/ zenodo. 801953.
  • Stubna, Jan & Bacik, Peter & Fridrichová, Jana & Hanus, Radek. (2021). Turquoise from Mongolia. The Journal of Gemmology. 37. 456- 458. 10. 15506/ JoG. 2021. 37. 5. 456.
  • Rossi, Manuela & Rizzi, Rosanna & Vergara, Alessandro & Capitelli, Francesco & Altomare, Angela & Bellatreccia, Fabio & Saviano, Michele & Ghiara, Rosaria. (2017). PREPUBLICATION: Compositional variation of turquoise group minerals from the historical collection of the Real Museo Mineralogico of the University of Naples. Mineralogical Magazine. 81. 10. 1180/ minmag. 2017. 081. 055.
  • Soleimani Rad, Zahra & Tondkar, Shirin & Mousavipak, Niloofar & Masoudi, Fariborz. (2019). Petrography, Gemology, and Raman Spectra Analysis of Turquoise Gemstone from Miduk Mine.
  • Huang, Liying & Chen, Quan-Li & Li, Yan & Yin, Zuowei & Xu, Fengshun & Gao, Xinxin & Du, Yang. (2023). Composition and Spectral Characteristics of Porcelain-Treated Turquoise. Gems & Gemology. 58. 438- 457. 10. 5741/ GEMS. 58. 4. 438.
  • Chen, Quan-Li & al, Su & Wang, Qian-xiang & Liu, Xian- yu & Ding, Xin-rong & Yin, Zuo- wei. (2016). The Gemological Characteristics of One Kind Turquoise Imitation. Guang pu xue yu guang pu fen xi Guang pu. 36. 2629-33. 10. 3964/ j. issn. 1000- 0593 (2016) 08- 2629- 05.
  • Sabbaghi, Hamid. (2018). A combinative technique to recognize and discriminate turquoise stone. Vibrational Spectroscopy. 99. 10. 1016/ j. vibspec. 2018. 09. 002.
  • Krzemnicki, Michael & Herzog, Franz & Zhou, Wei. (2011). A Historic Turquoise Jewelry Set Containing Fossilized Dentine (Odontolite) and Glass. Gems and Gemology. 47. 296- 301. 10. 5741/ GEMS. 47. 4. 296.
  • Ovissi, Masoud & Yazdi, Mohammad & Ghorbani, Mansour. (2017). Turquoise; is a gemstone that relates Geology to Archaeology and Anthropology. The first symposium on turquoise: industry and culture.
  • Nikbakht, Tahereh & Kakuee, Omidreza & Lamehi-Rachti, M. (2017). An efficient sonoluminescence analysis of turquoise gemstone as a weakly luminescent mineral. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 179. 10. 1016/ j. saa. 2017. 02. 038.
  • Wang X, Guo Y. The impact of trace metal cations and absorbed water on the color transition of turquoise. R Soc Open Sci. 2021 Feb 3; 8 (2): 201110. doi: 10. 1098/ rsos. 201110. PMID: 33972843; PMCID: PMC- 8074670.
  • Ahadnejad, Vahid. (2021). Piroozeh; A Novel Name for Persian Turquoise Bearing Gemstone. 10. 29252/ gem. 2021. 101021.
  • Shirdam, Bahareh & Shen, Andy & Yang, Mingxing & Mokhtari, Zahra & Fazliani, Hamed. (2021). Persian Turquoise: The Ancient Treasure of Neyshabur. Gems and Gemology. 57. 240- 257. 10. 5741/ GEMS. 57. 3. 240.
  • Shirdam, Bahareh & Aslani, Soheila. (2018). Photoluminescence Characteristics of Turquoise and Its Application on Turquoise Identification.
  • Frost, Ray & Reddy, B. & Martens, Wayde & Weier, Matt. (2006). The molecular structure of the phosphate mineral turquoise – A Raman spectroscopic study. Journal of Molecular Structure. 788. 10. 1016/ j. molstruc. 2005. 12. 003.
  • Young- Chool, Kim. (2004). A study on the identification of turquoise by FT-IR. Journal of the Korean Crystal Growth and Crystal Technology. 14.
  • Ovissi, Masoud & Yazdi, Mohammad & Ghorbani, Mansour. (2016). Persian turquoise gemology, comparison of historical Persian and world references.
  • Liu, Ling & Yang, Mingxing & Li, Yan & Di, Jingru & Chen, Ruoxi & Liu, Jia & He, Chong. (2021). Technical Evolution and Identification of Resin-Filled Turquoise. Gems & Gemology. 57. 22- 35. 10. 5741/ GEMS. 57. 1. 22.
  • Tong, Shuoyun & Chen, Guodong & Hu, Weikang & Pan, Shiyang & Zhu, Dan & Liu, Shuang & Lu, Li & Zhou, Shunchao & Zhou, Wanfeng. (2023). Determination of Geographic Origin of Turquoise by Combining Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis and Chemometrics. Minerals. 13. 1338. 10. 3390/ min- 13101338.
  • Ahmadirouhani, Reyhaneh & Taheri, Jafar & Gholamzadeh, Maryam & Azmi, Hassan & Azadi, Mehdi. (2019). A Review on Gemstone Potentials of Khorasan Razavi Province, Northeast of Iran: A Special Focus on Turquoise Gems. 1. 57- 71.
  • Shirdam, Bahareh & Aslani, Soheila. (2017). Origin determination of Iran Excellent-quality Turquoise based on trace element analysis using ICP- MS and Micro XRF.
  • Choudhary, Gagan. (2010). A New Type of Composite Turquoise. Gems & Gemology. 46. 106- 113. 10. 5741/ GEMS. 46. 2. 106.
  • Wu, Jinquan & Wang, Jian & Xiong, Wei & Feng, Xin & Lin, Zhaoxiang. (2023). Quantitative Detection of the Raw Ore Turquoise Based on Laser-Induced Breakdown Spectroscopy Technology. Applied Spectroscopy. 77. 10. 1177/ 000370- 282311- 81130.
  • Wang, Xueding & Ying, Guo. (2021). The impact of trace metal cations and absorbed water on the color transition of turquoise. Royal Society Open Science. 8. 201110. 10.1098/rsos.201110.
  • Fernandez, Ana & Jimenez-Segura, M.P. & Vazquez- Olmos, America & Sato-Berru, R. (2011). Turquoise blue nanocrystalline pigment based on Li 1.  33Ti 1.66O 4: Synthesis and characterization. Ceramics International – CERAM INT. 37. 1465- 1471. 10. 1016/ j. ceramint. 2010. 11. 015.
  • Perhaita, I. & Laura, Muresan & Silipas, Danut & Barbu-Tudoran, Lucian. (2019). Comparative study on blue-turquoise silicate apatite phosphors prepared via different synthesis routes. Journal of Sol-Gel Science and Technology. 89. 10. 1007/ s10971- 018- 4911- 8.
  • She, Ling-zhu & Qin, Ying & Feng, Min & Mao, Zhen-wei & Xu, Cun- yi & Huang, Feng-chun. (2008). Primary Raman microscopic study of the turquoise and its role in provenance-tracking. Guang pu xue yu guang pu fen xi – Guang pu. 28. 2107- 10.
  • Guo, K. & Lu, B. & Xia, Y.-B & Qi, L. (2010). Thermal phase transformation of turquoise. Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society. 38. 694- 699.
  • Patil, Dhanashree & Ghatge-Patil, Swaroopa. (2022). Biochemical comparison of Reactive Turquoise Blue dye treated and untreated in vitro plants of Solanum virginianum (L.).
  • Hull, Sharon & Fayek, Mostafa & Mathien, Frances & Shelley, Phillip & Durand, Kathy. (2008). A new approach to determining the geological provenance of turquoise artifacts using hydrogen and copper stable isotopes. Journal of Archaeological Science. 35. 1355- 1369. 10. 1016/ j. jas. 2007. 10. 001.
  • Oliveira, Joana & Azevedo, Joana & Silva, Artur & Teixeira, Natercia & Cruz, Luis & Mateus, Nuno & Freitas, Victor. (2010). Pyranoanthocyanin Dimers: A New Family of Turquoise Blue Anthocyanin-Derived Pigments Found in Port Wine. Journal of agricultural and food chemistry. 58. 5154- 9. 10. 1021/ jf9044414.
  • Zhetpisbayeva, K.B. & Zhubatova, B.N.. (2021). The symbolic meaning of turquoise in Iranian culture. Journal of Oriental Studies. 97. 10. 26577/ JOS. 2021. v97. i2. 08.
  • Oliveira, Joana & Azevedo, Joana & Silva, Artur & Teixeira, Natércia & Cruz, Luis & Mateus, Nuno & Freitas, Victor. (2010). Pyranoanthocyanin Dimers: A New Family of Turquoise Blue Anthocyanin-Derived Pigments Found in Port Wine. Journal of agricultural and food chemistry. 58. 5154- 9. 10. 1021/ jf9044414.
  • Zhou, Yuncheng & Jiang, Peng & Lei, Honghong & Li, Yong & Cao, Wenbin & Kuang, Jianlei. (2018). Synthesis and properties of novel turquoise-green pigments based on BaAl 2- x Mn x O 4+y. Dyes and Pigments. 155. 10. 1016/ j. dyepig. 2018. 03. 042.
  • Schwarzinger, Bettina & Schwarzinger, Clemens. (2017). Investigation of turquoise imitations and treatment with analytical pyrolysis and infrared spectroscopy. Journal of Analytical and Applied Pyrolysis. 125. 10. 1016/ j. Jaap. 2017. 05. 002.
  • Nachimuthu, Suganthi & Pushpanathan, Kuppusamy. (2019). Cerium Doped ZnS Nanorods for Photocatalytic Degradation of Turquoise Blue H5G Dye. Journal of Inorganic and Organometallic Polymers and Materials. 29. 10. 1007/ s10904- 019- 01077- 4.
  • Jiang, Peng & Li, Jun & Ozarowski, Andrew & Sleight, Arthur & Subramanian, Mas. (2013). Intense Turquoise and Green Colors in Brownmillerite- Type Oxides Based on Mn5+ in Ba2In2- xMnxO5+ x. Inorganic chemistry. 52. 10. 1021/ ic3020332.
  • Pavese, A. & Loredana, Prosperi & Dapiaggi, Monica. (2005). Use of IR-spectroscopy and diffraction to discriminate between natural synthetic and treated turquoise, and its imitations. Austr. Gemol. 22. 366- 371.
  • Aksu, Zümriye & Çağatay, Şeyda. (2006). Investigation of Biosorption of Gemazol Turquoise Blue-G reactive Dye by Dried Rhizopus Arrhizus in Batch and Continuous Systems. Separation and Purification Technology. 48. 24- 35. 10. 1016/ j. seppur. 2005. 07. 017.
  • Fritsch, E. & Mcclure, Shane & Ostrooumov, Mikhail & Andres, Yves & Moses, Thomas & Koivula, John & Kammerling, Robert. (1999). The Identification of Zachery-Treated Turquoise. Gems & Gemology. 35. 4- 16. 10. 5741/ GEMS. 35. 1. 4.
  • Gurschler, C. & Serafino, G. & Spöck, Gunter & Bianco, A. & Kraft, Martin & Kulcke, Axel. (2002). Spectral imaging for Classification of Natural and Artificial Turquoise Samples.
  • Chen, Quan- Li & Qi, L. -J & Zhang, Y. (2006). IR absorption spectrum representation of turquoise-treated turquoise and imitation. Journal of Gems and Gemmology. 8. 9- 12.
  • Othman, Norasikin & Zailani, Suhaiza & Mili, N. (2017). Emulsion Liquid Membrane Extraction of Turquoise Blue Reactive Dye–Study on Membrane Breakage and Swelling. Journal of Applied Membrane Science & Technology. 11. 10. 11113/ amst. v11i1. 78.
  • Crespo-Feo, Elena & Garcia-Guinea, Javier & Correcher, V. & Prado, Pedro. (2010). Luminescence behavior of turquoise [CuAl6(PO4)4(OH)8·4H2O]. Radiation Measurements. 45. 749- 752. 10. 1016/ j. radius. 2009. 12. 027.
  • Abdu, Yassir & Hull, Sharon & Fayek, Mostafa & Hawthorne, Frank. (2011). The turquoise-chalcosiderite Cu (Al, Fe3+) (6) (PO4) (4) (OH) (8) center dot 4H(2)O solid-solution series: A Mossbauer spectroscopy, XRD, EMPA, and FTIR study. American Mineralogist. 96. 10. 2138/ am. 2011. 3658.
  • Moe, Kyaw & Moses, Thomas & Johnson, Paul. (2007). Polymer-Impregnated Turquoise. Gems & Gemology. 43. 149- 151. 10. 5741/ GEMS. 43. 2. 149.
  • Pristacz, Helmut & Wildner, M. & Hammer, V.M.F. & Libowitzky, E. (2013). Investigations of a synthetic turquoise. Conference on Raman and Luminescence Spectroscopy in the Earth Sciences. 81- 82.
  • Bernardino, Nathalia & Izumi, Celly & Faria, Dalva. (2016). Technical Note: Fake turquoise was investigated by Raman microscopy. Forensic Science International. 262. 10. 1016/ j. forsciint. 2016. 03. 041.
  • Mousavipak, Niloofar & Panczer, Gerard. (2018). Analysis of Iranian turquoise color alteration based on absorption and Raman studies. Turquoise CuAl6 (PO4) 4- (OH) 8. 4H2O has been mined for more than 4000 years in Iran. Neyshabour Fyrouzeh Mine is one of the oldest ones and known the occurrence one of the best gem-quality turquoise in the world. There are several turquoise mines in Iran and for this study, we chose 3 major mines: Neyshabour(Khorasan province), Baghoo (Kerman province), and Chah Firoozeh (Damghan area) turquoise mines. The blue color in turquoise is due to Cu2+ but could be strongly modified by other substituted elements such as Fe2+, Zn2+, and especially Fe3+. In this study, we analyzed this variation by optical absorption as well as by Raman methods and compared different colors of turquoise from the blue (B) to the green (G) range of these three mines. The turquoises used in this study have low to excellent qualities.
  • Ahmadirouhani, Reyhaneh & Taheri, Jafar & Azmi, Hassan & moghadam, maliheh & nejad, Azam. (2017). Investigation of Gemstone Potentials in Khorasan Razavi Province with Special Attention to Turquoise Minerals.
  • Gandomani, Elaheh & Omran, nemat-allah & Emam jomeh, Amir. (2016). Mineralization and Controller Factors of Features Turquoise in Neyshabour Mine.
  • Caro, Federico & Deborah, Schorsch & Smieska, Louisa & Santarelli, Brunella. (2021). Non-invasive XRF analysis of ancient Egyptian and Near Eastern turquoise: A pilot study. Journal of Archaeological Science: Reports. 36. 10. 1016/ j. jasrep. 2021. 102893.
  • Pramila, M. & Santhanam, Manikandan & S., Anju & Kannan, M. & Hong, SoonHo & Maruthamuthu, Sivamoorthy & Subramanian, K. (2014). Electrochemical decolorization and degradation of Turquoise Blue G (TBG) by pre-adapted petroleum degrading bacteria. Separation and Purification Technology. 132. 719- 727. 10. 1016/ j. seppur. 2014. 06. 026.
  • Sandoval, Juan Andrés & Rodriguez, Zahira. (2022). Biodegradation of Erionyl Turquoise azoic textile dye from Chlorella vulgaris microalgae in simulated wastewater. Journal of Textile Engineering & Fashion Technology. 8. 121- 124. 10. 15406/ jteft. 2022. 08. 00309.
  • Laclavetine, Kilian & Ruvalcaba, Jose Luis & Duverger, Christian & Melgar Tísoc, Emiliano. (2014). The “Cultural Turquoise” and the XRF Characterization in situ of the Mosaic Disc of the Offering 99 from the Templo Mayor of Mexico- Tenochtitlan. ArchéoSciences / Journal of Archaeometry. 205- 218.
  • Soleimani Rad, Zahra & Masoudi, Fariborz & Tondkar, Shirin. (2022). Characterization of A Newfound Manganese Tungstate Mineral of Hübnerite in Turquoise Gemstone from Miduk Mine, Kerman, Iran. 10. 21203/ rs. 3. rs-2390767/ v1.
  • Xian, Yiheng & Liang, Yun & Yu, Chun & Yang, Liping & Wu, Yanwang. (2023). A method to characterize turquoise deposits in China using sedimentary environment-sensitive elements. Heritage Science. 11. 10. 1186/ s40494- 023- 01080- 6.
  • Gandomani, Elaheh & Omran, nemat-allah & Emam jomeh, Amir. (2016). Mineralization and Controller Factors of Features Turquoise in Neyshabour Mine.
  • Tong, S., Chen, G., Hu, W., Pan, S., Zhu, D., Liu, S., Lu, L., Zhou, S., & Zhou, W. (2023). Determination of Geographic Origin of Turquoise by Combining Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis and Chemometrics. Minerals, 13 (10), 1338. https:// doi. org/ 10. 3390/ min- 13101338
  • Owens, Philip & Eaton-Magana, Sally. (2009). Eljen Treated TURQUOISE. Gems and Gemology. 45. 140- 140.
  • Hull, Sharon & Fayek, Mostafa & Mathien, Frances & Roberts, Heidi. (2014). Turquoise Trade of the Ancestral Puebloan: Chaco and Beyond. Journal of Archaeological Science. 45. 10. 1016/ j. jas. 2014. 02. 016.
  • Morin, Guillaume & Brouder, Christian & Vignaud, Colette & Menu, Michel & Reiche, Ina. (2002). The history of turquoise imitation – odontolite- a combined elemental, structural, and spectroscopic study.
  • Thibodeau, Alyson & Chesley, J.T. & Ruiz, Joaquin & Killick, David & Vokes, Arthur. (2012). An alternative approach to the prehispanic turquoise trade. Turquoise in Mexico and North America: Science, Conservation, Culture and Collections. 65- 74.
  • Taghipour, Batoul & Mackizadeh, Mohammad. (2014). The origin of the tourmaline-turquoise association hosted in hydrothermally altered rocks of the Kuh- Zar Cu-Au-turquoise deposit, Damghan, Iran. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 272. 10. 1127/ 0077-7749/ 2014/ 0397.
  • Khazeni, A. (2014). Sky blue stone: The Turquoise trade in world history. Sky Blue Stone: The Turquoise Trade in World History. 1- 204.
  • Marchis, Tatiana & Avetta, Paola & Bianco Prevot, Alessandra & Fabbri, Debora & Viscardi, Guido & Laurenti, Enzo. (2011). Oxidative degradation of Remazol Turquoise Blue G 133 by soybean peroxidase. Journal of inorganic biochemistry. 105. 321- 7. 10. 1016/ j. Giorgio. 2010. 11. 009.
  • Carò, Federico & Deborah, Schorsch & Santarelli, Brunella. (2017). Proveniencing Turquoise Artifacts from Ancient Egyptian Contexts: A Non-invasive XRF Approach.
  • Ferrario, Marco. (2023). “The Turquoise Was Brought From Chorasmia” Mining, Empire, and the People of the Steppes across the Achaemenid Northeastern Borderlands. Journal of the Economic and Social History of the Orient. 66. 742- 793. 10. 1163/ 15685209- 12341606.
  • Thibodeau, Alyson & Killick, David & Hedquist, Saul & Chesley, John & Ruiz, Joaquin. (2015). Isotopic Evidence for the Provenance of Turquoise in the Southwestern United States. Geological Society of America Bulletin. 10. 1130/ B31135. 1.
  • Ebbesen, Finn & Madsen, Poul & Støvring, Søren & Hundborg, Heidi & Agati, Giovanni. (2007). The therapeutic effect of turquoise versus blue light with equal irradiance in preterm infants with jaundice. Acta paediatrica (Oslo, Norway: 1992. 96. 837- 41. 10. 1111/ j. 1651- 2227. 2007. 00261. x. To compare the efficiency of turquoise light with that of TL52 blue in the treatment of preterm infants with jaundice at the same level of body irradiance. Infants with gestational age 28- 37 weeks and non-hemolytic hyperbilirubinemia were treated for 24 h with either turquoise light (OSRAM L18W/ 860 fluorescent lamps) or blue light (Philips TL20W/ 52 fluorescent lamps). The concentrations of serum total bilirubin and bilirubin isomers were measured by the Vitros routine method and by HPLC, respectively. The decrease in serum concentrations of total bilirubin, total bilirubin isomers, and the toxic Z, Z- bilirubin was greatest for infants treated with turquoise light. Further, the increase in Z, E- bilirubin was smaller and there was a trend towards a higher rise in E, Z- bilirubin. Turquoise light has a greater bilirubin-reducing effect than TL52 blue light with equal irradiance, expressed both by serum total bilirubin, total bilirubin isomers and Z,  Z-bilirubin, i.e. the turquoise spectral range is more efficient than the blue. This is by deeper penetration into the skin, lower production of the Z, E- bilirubin, and greater production of E, Z- bilirubin, and lumirubin, in infants under turquoise light. This suggests, given equal irradiances, that light in the turquoise spectral range is preferable to the TL52 blue in the treatment of newborn jaundiced infants.
  • Shalem, Avinoam. (1995). New Evidence for the History of the Turquoise Glass Bowl in the Treasury of San Marco. Persica. 15. 91- 94. 10. 2143/ PERS. 15. 0.  2003528.
  • Smolarski, Philippe. (2021). THE HISTORY OF TURQUOISE AND MINING IN CHINA.
  • Walder, Heather. (2013). Stylistic and Chemical Investigation of Turquoise-Blue Glass Artifacts from the Contact Era of Wisconsin. Midcontinental Journal of Archaeology, MCJA. 38. 119-142. 10. 1179/ mca. 2013. 003.
  • Park, Dong Kyoo & Park, Soo-Nam & Kim, Hyun-Ji & Kim, Hyo & Kim, Ji-Hyeon & Ryu, Jae-Hong. (2024). Research on the Production of Turquoise Hydrogen from Methane (CH4) through Plasma Reaction. Energies. 17. 484. 10. 3390/ en- 17020484.
  • Jacobson, Mark. (2016). U.S. State gemstones that are blue. Rock & Minerals. 91. 36- 47. 10. 1080/ 00357529. 2016. 1099132.
  • Gallo, Jurex & Mariano, M.B. & Lucanas, A.D. & Ko, M.B. & Borja, Josephine & Hinode, Hirofumi & Gallardo, Susan. (2015). Photocatalytic degradation of turquoise blue dye using immobilized AC/ TiO2: Optimization of process parameters and pilot plant investigation. 10. 64- 73.
  • Wang, Xiaoyue. (2023). Research on Sustainable Development of Tourism Resources in Abandoned Gemstone Mining Areas with Big Data Technology: A Case Study of Turquoise Mining in Yungui Temple Area. Applied Mathematics and Nonlinear Sciences. 9. 10. 2478/ amns. 2023. 2. 00845.
  • Kadikova, Irina & Morozova, Ekaterina & Yuryeva, Tatyana & Grigorieva, I. & Yuryev, Vladimir. (2018). Study of deteriorating semi opaque turquoise lead-potassium glass beads at different stages of corrosion using micro-FTIR spectroscopy.
  • Dumanska- Slowik, Magdalena & Weselucha- Birczynska, Aleksandra & Natkaniec- Nowak, Lucyna & Gawel, Adam & Włodek, Adam & Kulmaczewska, Katarzyna. (2019). Blue or green? turquoise–planerite species from Carico Lake Valley in Nevada, the United States: Evidence from Raman spectroscopy. Journal of Raman Spectroscopy. 2020. 346- 356. 10. 1002/ jrs. 5761.
  • Chen, W. J & Shi, G. H & Wang, Y. & Ren, J. & Yuan, Y. & Dai, H. (2018). Infrared and Raman Spectra of High-Quality Turquoises from Hubei and Anhui, China: Characteristics and Significance. Guang Pu Xue Yu Guang Pu Fen Xi/ Spectroscopy and Spectral Analysis. 38. 1059- 1065. 10. 3964/ j. issn.  1000- 0593 (2018) 04- 1059- 07.
  • Laclavetine, Kilian & Ruvalcaba, Jose Luis & Duverger, Christian & Melgar Tisoc, Emiliano. (2014). Les “turquoises culturelles” et la caractérisation par Fluorescence de Rayons X (XRF) in situ du disque de mosaïque de l’offrande 99 du Templo Mayor de México-Tenochtitlan. ArchéoSciences – Revue d’ Archéométrie. 205- 218. 10. 4000/ archéosciences. 4269.
  • Gomez, Richard & Re, Nicholas. (2005). Hyperspectral imaging: Gem identification and authentication. Proceedings of SPIE – The International Society for Optical Engineering. 5655. 10. 1117/ 12. 579302.
  • Schimmel, D. & Fagnani, Katia & Santos, Joao & Barros, Maria Angélica & da Silva, Edson. (2010). Adsorption of turquoise blue QG reactor by commercial activated carbon in the batch reactor: kinetic and equilibrium studies. Brazilian Journal of Chemical Engineering. 27. 289- 298. 10. 1590/ S0104-66322- 010000- 200007.
  • Frost, Ray & Reddy, B. & Weier, Matt & Martens, Wayde. (2006). Ultraviolet-visible, near Infrared, and Mid Infrared Reflectance Spectroscopy of Turquoise. J. Near Infrared Spectroscopy. 14. 10. 1255/ jnirs. 641.
  • Ren, J. & Ye, X.-H & Wang, Y. & Luo, S.-Q & Shi, Guanghai. (2015). Source Constraints on Turquoise of the Erlitou Site by Infrared Spectra. Guang pu xue yu guang pu fen xi Guang pu. 35. 2767- 2772. 10. 3964/ j. issn. 1000-0593 (2015) 10- 2767- 06.
  • Evans, M. & Fayek, Mostafa & Riciputi, L. & Anovitz, Lawrence & Hull, Sharon & Mathien, Frances & Milford, H. (2004). LA- MC- ICPMS Determination of Copper Isotope Ratios in Turquoise from the Southwestern United States. AGU Fall Meeting Abstracts.
  • Jawwad, Muhammad & Novembrianto, Rizka & Wang, Ya-Fen & You, Sheng-Jie & Murti, Restu. (2021). Effects of pH on Adsorption of Remazol Turquoise Blue Dyez on MgO/ TiO2 Nanocomposite. Biomedical and Mechanical Engineering Journal (BIOMEJ). 1. 6. 10. 33005/biome. v1i1. 26.
  • Rahimzadeh, Bahman & Raeiszadeh, Sahar. (2019). The mineralogical and gemological characterization of Koshk Mine variscite, central Iran.
  • Nikbakht T, Kakuee O, Lamehi- Rachti M. An efficient sonoluminescence analysis of turquoise gemstone as a weakly luminescent mineral. Spectrochim Acta A Mol Biomol Spectrosc. 2017 May 15; 179: 171- 177. doi: 10. 1016/ j. saa. 2017. 02. 038. Epub 2017 Feb 21. PMID: 28242446.
  • Hu CK, Brunet A. The African turquoise killifish: A research organism to study vertebrate aging and diapause. Aging Cell. 2018 Jun; 17 (3):  e12757. doi: 10. 1111/ acel. 12757. Epub 2018 Mar 24. PMID: 29573324; PMCID: PMC- 5946070.
  • Xu, Jia-Hong & Yu, Xiao-Yan & Shen, Mei & Yan, Ying & Wang, Guang-Ya. (2024). Explaining Color Change in Gem-Quality Andradite Garnet. Crystals. 14. 180. 10. 3390/ crystal- 14020180.
  • Ishaque S, Saleem T, Qidwai W. Knowledge, attitudes and practices regarding gemstone therapeutics in a selected adult population in Pakistan. BMC Complement Altern Med. 2009 Aug 26; 9: 32. doi: 10. 1186/ 1472- 6882- 9-32. PMID: 19709426; PMCID: PMC- 2739841.
  • Aceto M, Calà E, Gulino F, Gullo F, Labate M, Agostino A, Picollo M. The Use of UV-Visible Diffuse Reflectance Spectrophotometry for a Fast, Preliminary Authentication of Gemstones. Molecules. 2022 Jul 23; 27 (15): 4716. doi: 10. 3390/ molecules- 27154716. PMID: 35897892; PMCID: PMC- 9330567.
  • Jusoh, Norela & Othman, Norasikin & Amin, Nurfarahin & Raja Sulaiman, Raja Norimie & Mohamed Noah, Norul Fatiha & Nurulashikin, Syahira & Ahmad Zaini, Muhammad Abbas. (2020). Synergistic Formulation for Turquoise Blue Dye Extraction Using Mixed Trioctylamine/ Cyanex 302 in Liquid-Liquid Extraction System. 10. 2991/ aer. k. 201229. 001.
  • Deshannavar, Umesh & Baskaran, Sivaprakash & Natarajan, Rajamohan & Katageri, Basavaraj & Gadagi, Amith & Hegde, Prasad & Kadapure, Santosh & Sutar, Mayur & Karanth, Madhura & Naykar, Tejashwini. (2023). Bioremediation of turquoise blue by Mangifera indica — particle swarm optimization and kinetic modeling. Biomass Conversion and Biorefinery. 1-16. 10. 1007/ s13399- 023- 04394- 4.
  • Othmane, Guillaume & Hull, Sharon & Fayek, Mostafa & Rouxel, Olivier & Lahd Geagea, Majdi & Kyser, Kurt. (2015). Hydrogen and copper isotope analysis of turquoise by SIMS: Calibration and matrix effects. Chemical Geology. 395. 10. 1016/ j. chem. 2014. 11. 024.
  • Shang Y, Guo Y, Tang J. Spectroscopy and chromaticity characterization of yellow to light-blue iron-containing beryl. Sci Rep. 2022 Jun 24; 12 (1): 10765. doi: 10. 1038/ s41598- 022- 11916- z. PMID: 35750690; PMCID: PMC- 9232576.
  • Jalili M, Ghanbari H, Malekfar R, Mousavi Masouleh SS. Core- Double- Shell Fe2O3SiO2 Jarosite Hybrid Nanoparticles Synthesized by Laser Ablation of Turquoise in Ethanol. ACS Omega. 2020 Feb 14; 5 (7): 3563- 3570. doi: 10. 1021/ acsomega. 9b03882. PMID: 32118171; PMCID: PMC- 7045545.
  • Liu Z, Guo Y, Shang Y, Yuan B. Research on parameters optimization of digital imaging systems in red-yellow jadeite color measurement. Sci Rep. 2022 Mar 7; 12 (1): 3619. doi: 10. 1038/ s41598- 022- 07715- 1. PMID: 35256695; PMCID: PMC- 8901649.
  • Li, Shu & Di, Jing-ru & Wang, Xiao-juan & Cao, Bai-hui. (2016). The Gemmological Characteristics of a New Kind of Imitation of Turquoise. Guang pu xue yu guang pu fen xi Guang pu. 36. 2978- 2983. 10. 3964/ j. issn. 1000- 0593 (2016) 09- 2978- 06.
  • Cougnard- Gregoire A, Merle BMJ, Aslam T, Seddon JM, Aknin I, Klaver CCW, Garhofer G, Layana AG, Minnella AM, Silva R, Delcourt C. Blue Light Exposure: Ocular Hazards and Prevention- A Narrative Review. Ophthalmol Ther. 2023 Apr; 12 (2): 755- 788. doi: 10. 1007/ s40123- 023- 00675- 3. Epub 2023 Feb 18. PMID: 36808601; PMCID: PMC- 9938358.
  • Mousavipak, Niloofar. (2020). Physico-chemical characterization of Iranian turquoises: a tentative to trace Middle-Eastern turquoise-bearing artifacts.
  • Zimmer, Alf. (1982). What is turquoise? A note on the evolution of color terms. Psychological Research. 44. 213- 230. 10. 1007/ BF00308421.
  • Rossi, Manuela & F., BELLATRECCIA & Rizzi, Rosanna & Capitelli, Francesco & M., SAVIANO & Cuocci, Corrado & Vergara, Alessandro & M.R., GHIARA. (2013). Multi- -methodological Characterization of Turquoise group minerals.
  • Ingo GM, Riccucci C, Guida G, Albini M, Giuliani C, Di Carlo G. Rebuilding of the Burial Environment from the Chemical Biography of Archeological Copper-Based Artifacts. ACS Omega. 2019 Jun 26; 4 (6): 11103- 11111. doi: 10. 1021/ acsomega. 9b00569. PMID: 31460208; PMCID: PMC- 6648805.
  • Travis F, Melzer A, Scharf D. Effects of Maharishi Light Technology with Gems: A random-assignment, placebo-controlled, blinded pilot study. SAGE Open Med. 2020 May 9; 8:  2050312120918272. doi: 10. 1177/ 2050312- 120918272. PMID: 32435483; PMCID: PMC- 7222645.
  • Chen QL, Al SJ, Wang QX, Liu XY, Ding XR, Yin ZW. [The Gemological Characteristics of One Kind Turquoise Imitation]. Guang Pu Xue Yu Guang Pu Fen Xi. 2016 Aug; 36 (8): 2629- 33. Chinese. PMID: 30074378.
  • Abd-Elhalim BT, Hemdan BA, El-Sayed SM, Ahmed MA, Maan SA, Abu-Hussien SH. Enhancing durability and sustainable preservation of Egyptian stone monuments using metabolites produced by Streptomyces exfoliatus. Sci Rep. 2023 Jun 10; 13 (1): 9458. doi: 10. 1038/ s41598- 023- 36542- 1. PMID: 37301893; PMCID: PMC- 10257707.
  • Andrews PW, Thomson JA Jr. The bright side of being blue: is depression as an adaptation for analyzing complex problems. Psychol Rev. 2009 Jul; 116 (3):  620- 54. doi: 10. 1037/ a0016242. PMID: 19618990; PMCID: PMC- 2734449.
  • Buetti-Dinh A, Ruinelli M, Czerski D, Scapozza C, Martignier A, Roman S, Caminada A, Tonolla M. Geochemical and metagenomics study of a metal-rich, green-turquoise-coloured stream in the southern Swiss Alps. PLoS One. 2021 Mar 30; 16 (3): e0248877. doi: 10. 1371/ journal. pone. 0248877. PMID: 33784327; PMCID: PMC- 8009434.
  • Azeemi ST, Raza SM. A critical analysis of chromotherapy and its scientific evolution. Evid Based Complement Alternat Med. 2005 Dec; 2 (4): 481- 8. doi: 10. 1093/ ecam/ – neh137. PMID: 16322805; PMCID: PMC- 1297510.
  • Di Gioia F, Tzortzakis N, Rouphael Y, Kyriacou MC, Sampaio SL, Ferreira ICFR, Petropoulos SA. Grown to be Blue-Antioxidant Properties and Health Effects of Colored Vegetables. Part II: Leafy, Fruit, and Other Vegetables. Antioxidants (Basel). 2020 Jan 23; 9 (2): 97. doi: 10.  3390/ antiox- 9020097. PMID: 31979214; PMCID: PMC- 7070715.
  • Wu, S. H. (2010). Production status of Longan in China. Acta Horticulturae. 863. 37- 44. 10. 17660/ ActaHortic. 2010. 863. 2.
  • Gürses A, Guneş K, Şahin E, Açıkyıldız M. Investigation of the removal kinetics, thermodynamics and adsorption mechanism of anionic textile dye, Remazol Red RB, with powder pumice, a sustainable adsorbent from wastewater. Front Chem. 2023 Jun 2; 11: 1156577. doi: 10. 3389/chem. 2023. 1156577. PMID: 37332895; PMCID: PMC- 10272435.
  • Teefy BB, Lemus AJJ, Adler A, Xu A, Bhala R, Hsu K, Benayoun BA. Widespread sex-dimorphism across single-cell transcriptomes of adult African turquoise killifish tissues. bioRxiv. 2023 May 8: 2023. 05. 05. 539616. doi: 10. 1101/ 2023. 05. 05. 539616. Update in: Cell Rep. 2023 Oct 12; 42 (10): 113237. PMID: 37214847; PMCID: PMC- 10197525.
  • Saloň A, Steuber B, Neshev R, Schmid-Zalaudek K, De Boever P, Bergmann E, Picha R, Fredriksen PM, Nkeh-Chungag BN, Goswami N. Vascular Responses following Light Therapy: A Pilot Study with Healthy Volunteers. J Clin Med. 2023 Mar 13; 12 (6): 2229. doi: 10. 3390/ jcm- 12062229. PMID: 36983231; PMCID: PMC- 10054429.
  • Chen QL, Yuan XQ, Chen JZ, Qi LJ. [Study on the treatment of turquoise using Raman spectroscopy]. Guang Pu Xue Yu Guang Pu Fen Xi. 2010 Jul; 30 (7): 1789- 92. Chinese. PMID: 20827971.
  • Shirdam, Bahareh & Aslani, Soheila. (2018). Photoluminescence Characteristics of Turquoise and Its Application on Turquoise Identification.
  • Cejka J, Sejkora J, Macek I, Malíkova R, Wang L, Scholz R, Xi Y, Frost RL. Raman and infrared spectroscopic study of turquoise minerals. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Oct 5; 149: 173- 82. doi: 10. 1016/ j. saa. 2015. 04. 029. Epub 2015 Apr 21. PMID: 25956330.
  • Qiu, Jun-Ting & Qi, Hui & Duan, Jilin. (2016). Reflectance Spectroscopy Characteristics of Turquoise. Minerals. 7. 3. 10. 3390/ min- 7010003. In this study, we determined the reflectance spectra of four types of turquoise with different hardness (porcelain, hard turquoise, soft turquoise, and loose turquoise) using an ASDTM TerraSpec spectrometer (spectral range 350–2500 nm, Visible-Near Infrared, and Short-wave Infrared). Several absorption features, including six narrow absorption peaks at 425 nm, 1480 nm, 2160 nm, 2218 nm, 2253 nm, and 2347 nm, and three wide peaks between 625–756 nm, 756–915 nm, and 1885–2133 nm have been identified. The strength of the absorption of turquoise increased with decreasing hardness. The absorption peaks at 2160 nm, 2218 nm, 2253 nm, 2347 nm, and 1885–2133 nm on some turquoise spectra (porcelain spectra, for example) were relatively weak, while those at 425 nm, 1480 nm, 625–756 nm, and 756–915 nm were always observed on all turquoise spectra, which could be the diagnostic absorption features for turquoise. Additionally, the hyper-spectral imaging (spectral range 1000– 2500 nm, Short-wave Infrared) of the four types of turquoise was obtained using a HySpex- TM imager. The Spectral Angle Mapper (SAM) method was successfully used to recognize turquoises, suggesting that hyper-spectral imaging may serve as a useful tool for fast turquoise identification and separation, especially for massive turquoise samples.

References

  • Dr. Indradeva Tripathi, Rasaratna Samuchhaya of Vagbhatacharya, 4/8, Hindi translation, 3rd edition, published by Chaukhamba Sanskrit Bhawan, K 37/ 116, Gopal Mandir Lane, Varanasi – 221 001.
  • Kim, Eun-Ae. (2007). Effects of Tourmaline Gemstone Therapy on Dysmenorrhea and Painful Menstruation in Middle School Girls – Preliminary study -. Journal of Korean Biological Nursing Science.
  • National Formulary of Unani Medicine. Part III. New Delhi: Central Council for Research in Unani Medicine; 2001. 20 р.
  • National Formulary of Unani Medicine. Part I. New Delhi: Central Council for Research in Unani Medicine; 2006. р. 46, 72, 78, 110, 231.
  • Dr. Harishankar Pathak, editor, ‘Jatak Parijat’ of Daivagya Vaidyanath, 2/21, Hindi translation, 1st edition, published by Chaukhamba Surabharati, Varanasi – 221001, 2012.
  • Khan A. Muheet-i-Azam. Vol 2. New Delhi: Central Council for Research in Unani Medicine; 2013. p. 788- 90.
  • Hakim A. Bustanul Mufradat. New Delhi: Idara Kitabu Shifa; 2011. 112 p. Rafiquddin M. Kanzul Advia Mufrada. AMU, Aligarh: University Publication Unit; 1985. p. 389, 390
  • Dubey, Sonali & Kumar, Rohit & Pati, Jayanta & Kiefer, Johannes & Rai, Awadhesh. (2021). Rapid Analysis of Chemical Composition and Physical Properties of Gemstones Using LIBS and Chemometric Technique. Applied Sciences. 11. 6156. 10. 3390/ app- 11136156.
  • Harishankar Pathak, editor, ‘Faladipika’ of Mantreshwara, 2/29, 1st edition, Hindi translation, published by Chaukhamba Surabharati, Varanasi – 221001. 
  • Dr. Vilas Dole, Dr. Parkasha Paranjpe, A textbook of Rasa Shastra, reprinted 2016, Chaukambha Sanskrit Pratishthana, Delhi.
  • National Formulary of Unani Medicine. Part V. New Delhi: Central Council for Research in Unani Medicine; 2008. 
  • Qarabadin Sarkari. New Delhi: Central Council for Research in Unani Medicine. 
  • Dr. Ravinder Angadi, A textbook of Rasa Shastra, Iatro- Chemistry and Ayurveda Pharmaceutics, First edition, Chaukambha Surbharti Parkashana, Varanasi.
  • P. Himsagara Chandra Murthy, Rasa- Shastra, the Mercurial system, Chaukambha Sanskrit series office, Varanasi.
  • Dr. Damodara Joshi, Rasa Amritam, Chaukambha Sanskrit Sansthana, Varanasi. Pio, Edwina & Kilpatrick, Rob & Le Fevre, Mark. (2017). 
  • Navratna – the nine gems: Illuminating enablers, barriers, and vignettes of South Asian women leaders. South Asian Journal of Business Studies. 6. 00- 00. 10. 1108/ SAJBS- 05- 2016- 0045.
  • Dokras, Uday. (2020). Navaratna (GEM) Therapy.
  • R., Shyam & Aithal, Sreeramana. (2023). Connecting Planetary Gods (Navagrahas) with Gods of Management (9 Ms). 2. 33- 47. 10. 5281/ zenodo. 8112182.
  • Baitar I. Al- Jami Li- Mufradatul Advia waAl- Aghzia. Vol. 2. New Delhi: Central Council for Research in Unani Medicine; 2000. p. 348, 349.
  • Kabiruddin M. Makhzanul Mufradat. New Delhi: Idara Kitabus Shifa; 2014. p. 240, 241.
  • Ghani N. Khazainul Advia. New Delhi: Idara Kitabus Shifa; 2011. p. 765, 766.
  • Bharati Kumari, Shreebhagwan Singh, Umesh Chandra Sinha. Correlation of Ayurveda and Astrology on Health. Ayushdhara. 2022 Sep. 30 [cited 2024 Jan. 25]; 9 (Supp- l1): 86- 9.  https:// ayushdhara. in/ index. php/ ayushdhara/ article/ view/ 1007
  • Seraj, Snaa & monjur- e- khudha, Mohammad & Aporna, S.A. & Khan, Shamiul & Islam, Farukul & Jahan, Rownak & Mou, S.M. & Khatun, Z. & Rahmatullah, Mohammed. (2011). 
  • Use of semiprecious- stones for preventive and curative purposes: A survey among the traditional medicinal practitioners of the bide community of Bangladesh. American-Eurasian Journal of Sustainable Agriculture. 5. 263- 269.
  • Savage A. Spring Books: Precious and semi-precious gems. Br Med J (Clin Res Ed). 1981 Apr 18; 282 (6272): 1295. PMCID: PMC- 1505318.
  • FORBES TR. Chalcedony and childbirth: precious and semi-precious stones as obstetrical amulets. Yale J Biol Med. 1963 Apr; 35 (5): 390- 401. PMID: 13958688; PMCID: PMC- 2604313.
  • Kabiruddin M. Bayaz-i-Kabir. 5thed. Vol. 2. New Delhi, India; Aijaz Publishing House; 1934. p. 426, 430, 452, 453.
  • Ashraf MH. Makhzanul Mufradat Ma Murakkabat wa Khwasul Advia. New Delhi: Aijaz Publishing House; 2011. 
  • Nasir MAH. Mufradat Nasiri Mae Takmila. India: Qaisari Publication. YNM.
  • Anandan AR, Thulasimani. Siddha Materia Medica (Mineral and Animal Kingdom). Department of Indian Medicine and Homeopathy, Chennai; 1985. 
  • National Formulary of Unani Medicine. Part VI. New Delhi: Central Council for Research in Unani Medicine, 2011.  Qarabadin Majidi. Delhi: Alami Printing Press. YNM.

Dr. Sahil Gupta completed his Bachelor of Ayurveda in Medicine and Surgery (B.A.M.S.) and Master’s Degree in Health Administration (MHA) India. He is Registered Ayurvedic Doctor & Vaidya in India having Registration No. 23780. He is the CEO and founder of IAFA. After completing BAMS, Dr. Sahil Gupta started practicing Ayruveda by giving prime importance to allergic disorders management. He became the first Ayurvedic doctor to cure Food Allergies through Ayurveda. Read More About Dr. Sahil Gupta.

Was this Page Helpful?

    Read More Articles

    Contact IAFA Ayurveda - WhatsApp Live Chat