Rajavarta Stone (Lapis Lazuli – Lazurite) – The Astrological and Ayurvedic Benefits
Introduction
Lapis lazuli is a relatively rare semi-precious stone that has been prized since antiquity for its intense blue color. It is a rock, largely formed from the mineral lazurite. The main component of lapis lazuli is lazurite (25% to 40%), a feldspathoid silicate mineral with the formula (Na, Ca)8 (AlSiO4)6 (S, SO Cl)1-2. It was mined in the Badakhshan province of Afghanistan as early as the 3rd millennium BC and some sources are found as far east as in the region around Lake Baikal in Siberia. Trade in the stone is ancient enough for lapis jewelry to have been found at Predynastic Egyptian and ancient Sumerian sites and as lapis beads at neolithic burials in Mehrgarh, the Caucasus, and even as far from Afghanistan as Mauritania. Its mines are also found in Germany, Myanmar, and Persian countries. In India, it is found in Ajmer of Rajasthan. Most lapis lazuli also contain calcite (white), sodalite (blue), and pyrite (metallic yellow). Other possible constituents: augite; diopside; enstatite; mica; hauynite; hornblende and nosean. Some lapis lazuli contain trace amounts of the sulfur-rich lullingite variety geyerite. Lapis lazuli usually occurs in crystalline marble as a result of contact metamorphism.
लापीस लाजुली एक अपेक्षाकृत दुर्लभ अर्ध-कीमती पत्थर है जो प्राचीन काल से ही अपने गहरे नीले रंग के लिए बेशकीमती रहा है। यह एक चट्टान है, जो मुख्यतः खनिज लाजुराइट से बनी है। लैपिस लाजुली का मुख्य घटक लैजुराइट (25% से 40%) है, जो एक फेल्डस्पैथॉइड सिलिकेट खनिज है जिसका सूत्र (Na, Ca)8 (AlSiO4)6 (S, SO Cl)1-2 है। तीसरी सहस्राब्दी ईसा पूर्व से ही अफगानिस्तान के बदख्शां प्रांत में इसका खनन किया जा रहा था और ऐसे स्रोत हैं जो पूर्व में साइबेरिया में बैकाल झील के आसपास के क्षेत्र में पाए जाते हैं। पत्थर का व्यापार इतना प्राचीन है कि लैपिस आभूषण पूर्व-राजवंशीय मिस्र और प्राचीन सुमेरियन स्थलों पर पाए जाते हैं और मेहरगढ़, काकेशस और यहां तक कि अफगानिस्तान से लेकर मॉरिटानिया तक नवपाषाणकालीन कब्रगाहों में लैपिस मोतियों के रूप में पाए जाते हैं। इसकी खदानें जर्मनी, म्यांमार और फ़ारसी देशों में भी पाई जाती हैं। भारत में यह राजस्थान के अजमेर में पाया जाता है। अधिकांश लापीस लाजुली में कैल्साइट (सफ़ेद), सोडालाइट (नीला), और पाइराइट (धात्विक पीला) भी होता है। अन्य संभावित घटक: ऑगाइट; डायोपसाइड; enstatite; अभ्रक; हाउनाइट; हॉर्नब्लेंड और नोसेन। कुछ लैपिस लाजुली में सल्फर युक्त लुलिंगाइट किस्म के गीयराइट की थोड़ी मात्रा होती है। लैपिस लाजुली आमतौर पर संपर्क कायापलट के परिणामस्वरूप क्रिस्टलीय संगमरमर में होता है।
Ayurvedic View of Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli)
राजावर्त गहरे नीले वर्ण का चमकदार खनिजपाषाण है, जिसे काट-छाँटकर उपरत्न के रूप में धारण योग्य बनाया जाता है। इसके खनिज को Lasurite कहते है। यह खनिज सोडियम, गन्धक, एल्युमिनियम, सिलिकोन तथा ऑक्सीजन का यौगिक है। लैपिस लैजुली का अर्थ यह है कि नीलवर्ण का ऐसा पत्थर जो पच्चीदारी के काम आता है। कृत्रिम राजावर्त ईसा से 300 वर्ष पूर्व से ही बनाया जाता है। कृत्रिम बनाने के लिए सिकता, गन्धक, राल और रंग विशेष मिलाकर बहुत ही प्रखर अग्नि में पकाया जाता है। असली नकली परीक्षा के लिए पत्थर पर घिसने एवं पानी में घोलने से पता चल जाता है। क्योंकि नकली पानी में घुलकर पानी को और भी नीला कर देता है। जबकि असली को घिसकर पानी में घोलने से बैठा रह जाता है और पानी का रंग भी नहीं बदलता है। यह नियत आकार के खण्डों में होता है। गर्मी के दिनों में इसका रंग परिवर्तित हो जाता है। लैपिस शब्द लैटिन का है जिसका अर्थ पच्चीदारी में काम आने वाला पत्थर है। लैजुली भी लैटिन भाषा का शब्द है जिसका अंग्रेजी में अर्थ एजुअर होता है। एजुअर का अर्थ आकाशीय नीलवर्ण है। अर्थात् लैपिस लैजुली का अर्थ है कि नील वर्ण का ऐसा पत्थर जो पच्चीदारी के काम आता है। कृत्रिम राजावर्त ईसा से ३००० वर्ष पूर्व से ही बनाया जाता है। राजावर्त से ही संगमर्मर पर पच्चीदारी होती थी। पुरातत्व वेत्ताओं का कथन है कि पच्चीदारी कृत्रिम राजावर्त से ही होता है। अत: सिद्ध होता है कि २००० वर्ष से पूर्व से ही कृत्रिम राजावर्त बनाया जाता था। कृत्रिम बनाने के लिए मिट्टी, सिकता, राल और रंग विशेष मिलाकर बहुत ही प्रखर अग्नि में पकाया जाता है। नकली परीक्षा के लिए पत्थर पर घिसने एवं पानी का रंग भी नीला कर असली घिसकर पानी में घोलने से बैठा रह जाता है और पानी का रंग भी नही बदलता है। इजिप्त वासी इसे बहुत ही पवित्र रत्न मानते हैं। इस शताब्दी के प्रारम्भ तक वहाँ प्रत्येक न्यायाधीशों को न्यायालय में न्याय की कुर्सी पर बैठते समय स्वर्ण मण्डित राजावर्त की माला अपने गले में पहनना पड़ता था। उनका विश्वास था कि राजावर्त धारण करने के बाद न्याय एवं सात्विक बुद्धि में परिवर्तन नहीं आता है। वहाँ आज भी पुजारी, धार्मिक एवं आध्यात्मिक नेता इसे धारण करते हैं।
उपयोग:-
- यह शनिग्रह का उपरत्न है।
- धारण से शनिग्रह बाधा नाशक एवं मांगल्य है।
- चिकित्सार्थ अधिक प्रयोग होता है।
- पच्चीदारी, संगमरमर पर नक्कासी करके इसी से भर कर पालिश किया जाता है।
- एतदर्थ कृत्रिम का प्रयोग हजारों वर्षों से हो रहा है।
- अन्य औद्योगिक क्षेत्रों में भी यह उपयोगी है।
Rajavarta is a shiny mineral stone of dark blue color, which is cut and made suitable for wearing as a semi-precious stone. Its mineral is called Lasurite. This mineral is a compound of sodium, sulfur, aluminum, silicon, and oxygen. The meaning of Lapis Lazuli is that it is a blue stone that is used for making mosaics. Artificial Rajavarta was made 300 years before Christ. To make it artificial, sand, sulfur, resin, and special colors are mixed and cooked in a very intense fire. For the real fake test, it can be detected by rubbing it on a stone and mixing it in water. Because fake dissolves in water and turns it even bluer. Whereas if the real one is rubbed and mixed in water, it remains intact, and the color of the water does not change. It happens in fixed-size segments. Its color changes during summer. The word Lapis is of Latin origin and means stone used in mosaics. Lazuli is also a Latin word which means azure in English. Azure means sky blue. That is, Lapis Lazuli is a blue-colored stone that is used for making mosaics. To make it artificial, clay, sand, resin, and special colors are mixed and cooked in a very intense fire. For the mock test, rubbing on a stone and turning the color of the water blue, the real one remains intact after rubbing and mixing it in water and the color of the water also does not change. Egyptians consider it a very sacred gem. Till the beginning of this century, every judge there had to wear a gold-plated Rajavarta garland around his neck while sitting on the judicial chair in the court. He believed that after wearing Rajavarta, there was no change in justice and virtuous intellect. Even today, priests, and religious and spiritual leaders wear it there.
Use:-
• This is the substitute gemstone of Saturn.
• By wearing Saturn, it is a destroyer of obstacles and auspicious.
• It is used more for medical purposes.
• Mosaic is carved on marble, filled with it, and then polished.
• Ad-hoc artificial devices have been in use for thousands of years.
Astrological View of Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli)
उपरत्न वर्ग के खनिजपाषाण में काठिन्य, चमक, पारदर्शकता रत्नो की अपेक्षा कम गुणवाले होते है। इनका मूल्य भी कम होता है। अतः इन्हें उपरत्न कहा जाता है। उपरत्नों की संख्या में मतभिन्नता है- आनन्दकन्दकार ने 9 उपरत्न माने है। जबकि आयुर्वेदप्रकाशकार ने 15 उपरत्न माने है। बृहद योगतरंगिणीकार ने 4 ही उपरत्न माने है। रसतरंगिणीकार ने छः उपरत्न माने है। आनन्दकन्दकार ने विमल, सस्यक, कान्त एवं तारकान्त को भी उपरत्न में शामिल कर दिया है। बृहत् योग तरंगिणीकार ने मुक्ता प्रवाल को भी उपरत्न वर्ग में मानकर और भी भ्र्म पैदा किया है। आयुर्वेद प्रकाशकार ने ५ प्रचलित उपरत्नो के अतिरिक्त १० नए उपरत्न को इस वर्ग में शामिल किया है परन्तु सबसे अधिक रस तरंगिणी का मत ही प्रचलित है।
Reference:- आ. क. क्रि. व १/ १२
सूर्यकान्तश्चन्द्रकान्तस्तारकान्तस्तु कान्तक: ।
वैक्रान्तश्च नृपावर्तस्सस्यको विमला तथा।
Reference: आयुर्वेद प्रकाश ५/ ६- ८
वैक्रान्तः सूर्यकान्तश्च चन्द्रकान्तश्तथैवं च: ।
राजावर्तो लालसंज्ञ: पैरोजाख्यस्तथा अपर: ।।
मुक्ता शुक्तिस्तथा शेख: कर्पूरशमा अथ काचजा: ।
मणयो नीलपीताद्या हन्ये विषहराश्च ये।।
वह्यादिस्तम्भका ये च ते सर्वे हि परीक्षकै: ।
गणिता द्लुपरत्नेषु मणयो लोकविश्रुता: ।।
Reference: बृहत् योग तरंगिण ४३/ ८२
मुक्ता विद्रुम शंखाश्व राजावर्तस्तथैव च। उपरत्नानि चत्वारि कथितानि मनीषिभिः।।
Reference: Rasa Trangini. 23/ 154
वैक्रान्त सूर्यकान्त चन्द्रकांतो नृपो पल |
पेरोजकञ्च स्फटिकम क्षुद्र रत्न गणो हव्यम।।
There are Six Uparatna as per Rasa Trangini
- Vaikranta (Fluorite/ Tormaline)
- Suryakanta (Spinel) (Na, O, CaO, Al, 2SiO)
- Candrakant (Moonstone) (K, Si, O, Na, Al, Si)
- Raja-varta (Lapis Lazuli) (Na, Ca), (Al, SiO) (S, SO, Cl)
- Pairojaka (Turquoise)
- Sphatika (Rock crystal)
A few gems are also added to the list of Uparatna by NCISM and they mention a total 13 number of Upratnas. They are as follows:
- Vaikranta (Fluorite/ Tormaline)
- Suryakanta (Spinel) (Na, O, CaO, Al, 2SiO)
- Candrakant (Moonstone) (K, Si, O, Na, Al, Si)
- Raja-varta (Lapis Lazuli) (Na, Ca), (Al, SiO) (S, SO, Cl)
- Pairojaka (Turquoise)
- Sphatika (Rock crystal)
- Putika (Peridote)
- Trinkanta (Amber, Succinum)
- Rudhiram/ rudhir Putika (Carnelion)
- Palankam/ Palakam (Onyx, CaSO4, 2H2O)
- Vyomasma (Jade)
- Kosheyaashm
- Sougandhik
Upratna is Mentioned in Different Ayurvedic Literature
Upratna name/ semi-precious stone | Aayurveda Parkasha | Aanand Kand | Brihat Yog Trangini | Rasa Trangini |
Suryakanta | + | + | – | + |
Chandrakant | + | + | – | + |
Vaikrant | + | + | – | + |
Rajavart | + | + | + | + |
Perojak | + | + | – | + |
Saphatik | – | – | – | + |
Taarkaant | – | + | – | – |
Kaant | – | + | – | – |
Sasyak | – | + | – | – |
Vimal | – | + | – | – |
Laalmani | + | – | – | – |
Mukta Shukti | + | – | – | – |
Shankh | + | – | + | – |
Karpurashma | + | – | – | – |
Kaachmani | + | – | – | – |
Neelmani | + | – | – | – |
Peetmani | + | – | – | – |
Vishhar Mani | + | – | – | – |
Agni Stambhak Mani | + | – | – | – |
Jal Stambhak Mani | + | – | + | – |
Mukta | – | – | + | – |
Parvala | – | – | + | – |
Have A Health Issue?
Consult Online
- Dr. Sahil Gupta (B.A.M.S., M.H.A.)
Ayurvedic Allergy Specialist
CEO & Founder of IAFA®
Properties of Semi-Precious Stone (Upratna)
Name | Chemical composition | Structure | Hardness | Specific Gravity | Refrective index | Double refraction |
Fluorite (Vaikrant) | CaF2 | Cubic | 4 | 3.18 | 1.43 | None |
Spinel (Suryakant) | MgAl2O4 | Cubic | 8 | 3.60 | 1.71- 1.73 | None |
Moonstone (Chandrakant) | KAlSi3O8 | Monoclinic | 6 | 2.57 | 1.52- 1.53 | 0.005 |
Lapis Lazuli (Rajavart) | (Na, Ca)8, (Al, Si12 O24 (SO4) Cl2 (OH)2 | Various | 5.5 | 2.80 | 1.50 | None |
Turquoise (Perojaka) | Cu Al6 (PO4)4 (OH)8 5 H2O | Triclinic | 6 | 2.80 | 1.61- 1.65 | 0.004 |
Rock Crystal (Sphatika) | SiO2 | Trigonal | 7 | 2.65 | 1.54- 1.55 | 0.009 |
Jade (Vyomashma) | NA (AL, FE) Si2O6 | Monoclinic | 7 | 3.33 | 1.66- 1.68 | 0.012 |
Onyx (Palanka) | SiO2 | Trigonal | 7 | 2.61 | 1.53- 1.54 | 0.004 |
Carnelian (Rudhiram, Akeek) | SiO2 | Trigonal | 7 | 2.61 | 1.53- 1.54 | 0.004 |
Peridot (Putika) | (Mg, Fe)2 SiO4 | Orthorhombic | 6.5 | 3.34 | 1.64- 1.69 | 0.036 |
Amber (Trinkant) | C6 H16 O | Amorphous | 2.5 | 1.08 | 1.54- 1.55 | N/ A |
Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli) Upratna (Semi-Precious Stone) Indicated as a Substitute for Precious Stone as Per Astrological Science to Nullify the Maleficent Effect of Various Planets (Grahas) and to Treat the Roga (Disorders) Related to that Particular Planet.
Not everyone is affluent, and the affordability of precious stones remains beyond the means of many individuals. In light of this, semiprecious stones emerge as a viable and more accessible alternative. These gemstones, while not as costly as their precious counterparts, possess unique and appealing qualities. Embracing semi precious stones allows a broader spectrum of people to enjoy the beauty and symbolism associated with gemstones without the financial strain associated with acquiring precious ones.
Planet | Precious Gem Used | Substitute Semi-Precious Stone |
Sun (Surya) | Manikya (Ruby) | – |
Moon (Chandra) | Mukta (Pearl) | – |
Mars (Mangala) | Vidruma (Coral) | – |
Mercury (Buddha) | Markat (Emerald)- | |
Jupiter (Guru) | Pushapraga (Topaz) | – |
Venus (Shukra) | Vajra (Diamond) | – |
Saturn (Shani) | Neelam (Blue sapphire) | Blue Sapphire |
Rahu | Gomeda (Hessonite) | – |
Ketu | Vaidurya (Cat’s eye stone) | – |
Diseases Induced by Maleficent Effects of Planets (Greha Roga) or Diseases Induced by Dushkarma (Sinful Deeds) Done by the Rogi (Patient) i.e Karma Vipaka Siddhanta
Planet | Diseases Caused |
Sun | Shoth (Inflammation in the body), Apsmar (Epilepsy), Paitikavikara, Jawara (Fever), Diseases of the eye, skin, and bone, rational fears, Bites from poisonous reptiles like snakes, weakening the digestive system, and constipation. |
Moon | Sleep diseases such as Anidra (insomnia) or somnambulism (sleepwalking), Kaphaj Kasa, Atisara, Alsaya, Agnimandya (Loss of appetite), Aruchi (Disinterest in food), Kamala (Jaundice), Chitudvega, Grehani, Hydrophobia, Fear of animals with horns, Problems concerning women, Hallucinations |
Mars | Trishna (Excessive thirst), Bilious disorders, Flatulence, Excessive fear of fire, Gulma, appendicitis, Kustha (Leprosy), eye disorder, Apsmar (Epilepsy), Rakta Vikara, Majja Vikar (Bone marrow diseases), Kandu (Itching), Ruksha Twaka (Rough skin). |
Mercury | Lack of self-confidence, Gala Rog (Throat problems like goiter, etc.), Nasagata Rog (Nose Diseases), Vata- Kaphaj Roga, Cold and Cough, Flatulence, Poisoning. Twaka Dosha (Skin diseases), Vicharchika. Jaundice. |
Jupiter | Gulma, Appendicitis, Karan Vedna (an ear disease), Sanyas.Frequent litigation, Problems with friends, parents, and relatives. |
Venus | Pandu (Anaemia), Netra Roga (Disorders of the eye), Flatulence, Cough, Mutrakrich (Urinary disease), Prameha (Diabetes), Syphilis, Shukra-Vyapati (Low sperm count), Impotence, Dryness of Mouth, Constipation, Irrational fears. |
Saturn | Flatulence, Cough, Pain in the legs, Excessive Fatigue, Illusion, Daha (Excessive heat in the body), Mental shocks, Personal calamities, and Accidents causing temporary or lasting wounds. |
Rahu | Heart diseases such as an attack, Shotha (Inflammation), Kushtha (Leprosy), illusions, hallucinations, disease due to poisoning, excessive hurt, and wounds. |
Ketu | Unknown mysterious diseases, cannot be easily found by doctors. |
Types of Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli) as Per Astrology
Reference: Aanand Kand Kriya. 8/ 196
एक चूर्णा कृति ज्ञेयो द्वित्यो गोलकात्मक:।
Two types based on the form in which it is obtained:
- Churnakriti Rajavart
- Golakriti Rajavart
Reference: Rasa Ratna Sammuchya. 4/ 5
राजवर्तो अलप रक्तोरु नीलिमा मिश्रित प्रभ:।
Three types depending on the color:
- Alparakta Varna (pale red color)’
- Nila Varna (blue color)
- Misrita Varna (mixed color)
Types of Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli)
Rajavart or Aavart Mani is famous among gemologists due to its golden pyrite flecks and deep blue color, but in different types or grades of lapis lazuli/ Rajavart, there are variations in appearance and quality. Some common types of Raja Varta / Nrip Varta/ Aavarta Mani/ Nilasma/ Avartaka Mani (Lapis Lazuli) based on their characteristics are as follows:
AAA Grade Lapis Lazuli / Rajavart: AAA grade Rajavart/ lapis lazuli is considered the most desirable type and highest grade of Rajavart/ Aavarta Mani/ lapis lazuli. In this variety of lapis lazuli, there is no pyrite or calcite inclusion, or it’s very minimal and has a very rich, intense blue color. This type of Rajavart has a luxurious appearance as the color is evenly and uniformly distributed throughout this semi-precious stone. This variety is typically free from flaws and impurities and used for making collector’s pieces and high-end jewelry.
AA Grade Lapis Lazuli: This is also the high-grade type of Rajavart but the difference between the AA and AAA grades of Rajavart is that it has slightly more pyrite and calcite inclusion in comparison, but the color of this semi-precious stone is deeply saturated and vibrant. This Upratna type has minimal imperfection and good clarity and is used to make artisanal pieces, and fine jewelry thus providing a balance of affordability and quality to the individual.
A Grade Lapis Lazuli: This type of Rajavart is also of good quality but it has more inclusion of pyrite and calcite in it as compared to the AAA and AA grade of lapis lazuli. This type of semi-precious stone has natural markings and minor imperfections but it is suitable for use in decorative objects and jewelry.
B Grade Lapis Lazuli: The moderate quality of lapis lazuli is considered under B grade, and it shows pyrite and calcite inclusion which are noticeable and it also shows variations in clarity and color. This type has visible flaws and markings due to which its blue color is less intense. This type of Rajavart is also used to make jewelry where a lower price is a priority of the individual.
Denim Lapis Lazuli: The lapis lazuli or Rajavart that exhibits a denim-like blue color compared to traditional lapis lazuli and is lighter is known as denim lapis lazuli. This type of Rajavart has a more subtle appearance due to smaller and fewer pyrite flecks and it is highly valued for its unique color variation and is often used in artisanal creations and making of jewelry.
Matrix Lapis Lazuli: The rock that contains veins or patches of lapis lazuli and features a matrix or host is known as matrix lapis lazuli. This variety of Rajavart varies in texture and color ranging from fine-grained to coarse-grained and from light to dark. This type of semi-precious stone is famous for its natural and rustic appearance and is commonly used in statement jewelry pieces.
Synonyms of Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli)
Reference: Rasa Trangini. 23/ 19
राजावर्तो नृपावर्त आवर्त मणि इत्यपि।
नृपोपलश्च नीलाश्मा स एव परिकीर्तित:।।
Reference: Aayurveda Parkasha. 5/ 145
राजावर्तो नृपावर्तो राजन्य आवर्तक स तथा।
आवर्तक मणि अरावर्त: स्याद इत्येष शराहव्य।।
Nripavarta, Avartmani, Nripopala, Nilashma, Rajanyavarta, and Avarta, are the synonyms of the classics of the Rajavart.
Names of Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli) in Different Languages
- Lajavard, Lajavarat, Lajavaral (Hindi)
- Rajavartamani (Tamil)
- Rajavard (Marathi)
- Rajavartamani (Telegu)
- Lajavaed (Punjabi)
- Rajavartamani (Malayalam)
- Revati, Ravati (Gujrati)
- Rajavartamani (Kannada)
- Lapis Lazuli (English)
Formation of the Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli)
Rajavart / Aavart Mani / Lapis lazuli has a unique formation process that spans millions of years and involves mineralogical and geological phenomena. The formation of Rajvarta takes place in the following steps:
Geological Setting: In remote mountainous regions, particularly in Afghanistan, there are metamorphic rocks from which some of the finest quality lapis lazuli is sourced. In ancient oceanic environments, these metamorphic rocks were originally formed where sediments are rich in minerals such as calcite, pyrite, lazurite, etc. and they accumulate over millions of years.
Mineral Composition: The key mineral component of Rajavart is lazurite, due to which this beautiful semi-precious gemstone exhibits a deep blue color. Other minerals that are commonly found in Rajavart are calcite (white), pyrite (golden yellow), and sodalite. These minerals are present in different proportions in this gemstone which contributes to the unique appearance and properties of each Rajavart/ Aavart Mani specimen.
Metamorphism: The main process through which lapis lazuli is formed is known as metamorphism in which due to pressure, temperature, and chemical composition alteration occurs in existing rocks. Within the earth’s crust, the transformation in the metamorphic rocks occurs in which the precursor mineral that is present in original sedimentary rocks undergoes intense pressure and heat.
Intrusion of Igneous Rocks: Intrusions of igneous rocks such as granite or syenite may occur during the metamorphic process and result in intrusions that introduce additional minerals and heat into the surrounding rocks, and alter the composition of the rock which results in the formation of Rajavart/ lapis lazuli.
Interaction of Minerals: The minerals within the metamorphic rocks interact chemically and crystallize into new forms. Under high-pressure conditions, lazurite, the primary constituent of Rajavart, is formed from the alteration of other minerals such as sodalite and hauyne. The distinctive golden flecks seen in lapis lazuli are due to the presence of the pyrite within the rock that forms Rajavart.
Vein Formation: The mineral-rich fluids have permeated through fractures and fissures resulting in Rajavarta to be found in veins or seams within metamorphic rocks. The formation of Rajavart deposits of different sizes and grades depends on the veins’ thickness and quality.
Mining and Extraction: Through mining techniques such as open-pit mining or underground mining, Rajavart is extracted once it is identified. The extracted rocks are then processed to separate the Rajavart from the surrounding waste rock and to prepare the semi-precious gemstone for cutting, polishing, and use in jewelry.
Reference of Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli)
History of Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli)
आयुर्वेदीय संहिताओं में राजावर्त का कोई उल्लेख नहीं मिलता है किन्तु ५वीं शती का ज्योतिष ग्रन्थ बृहत् संहिता में राजावर्त का विस्तृत वर्णन मिलता है।
प्राचीन मेसोपोटामिया: राजावर्त का इतिहास प्राचीन मेसोपोटामिया में खोजा जा सकता है, जहां यह बेबीलोनियों, अश्शूरियों और सुमेरियनों द्वारा अत्यधिक प्रसिद्ध और मूल्यवान था। यह सुमेरियन में स्वर्ग के पत्थर के रूप में प्रसिद्ध था और साग-गी-गा के नाम से जाना जाता था और उन्होंने इस खूबसूरत रत्न को देवी इनन्ना से संबंधित किया था। राजावर्त का उपयोग प्राचीन मेसोपोटामिया में आभूषण, ताबीज बनाने में किया जाता था, जिसके बारे में माना जाता था कि इसमें सुरक्षात्मक और जादुई गुण होते हैं।
प्राचीन मिस्र: प्राचीन मिस्र में राजावर्त उपरत्न को देवताओं और स्वर्ग के शाश्वत जीवन का प्रतीक माना जाता है और यह अपने चमकीले नीले रंग के कारण बहुत प्रसिद्ध है। उस समय राजावर्त/लापीस लाजुली का उपयोग फिरौन के दफन मुखौटों, रॉयल्टी, आभूषणों में किया जाता था, यहां तक कि तूतनखामुन के राजा भी इस खूबसूरत पत्थर को पसंद करते थे। इस पत्थर का उपयोग प्राचीन मिस्र के समय में रंगद्रव्य बनाने के लिए किया जाता था, जो कि पत्थर को पीसकर पाउडर बनाकर बनाया गया अल्ट्रामरीन रंगद्रव्य है और मिस्र की दीवार पेंटिंग में व्यापक रूप से उपयोग किया जाता है जो मिस्र के नीले रंग के रूप में प्रसिद्ध है।
प्राचीन फारस: प्राचीन फारस में राजावर्त उपरत्न को उसकी दिव्यता और रॉयल्टी के लिए अत्यधिक महत्व दिया जाता है। ऐसा माना जाता था कि जो व्यक्ति इस खूबसूरत रत्न को पहनता है उसे सुरक्षा, आशीर्वाद, ज्ञान और समृद्धि मिलती है। लापीस लाजुली का उपयोग फ़ारसी रानियों और राजाओं के विभिन्न आभूषणों में किया जाता है और अक्सर कब्रों, महलों और मंदिरों के निर्माण में उपयोग किया जाता है।
प्राचीन ग्रीस और रोम: प्राचीन ग्रीस में राजावर्त सैफिरस नाम से प्रसिद्ध था और प्राचीन रोम में यह लापीस नाम से प्रसिद्ध था और इसका संबंध शुक्र और बृहस्पति ग्रह यानी शुक्र और बृहस्पति ग्रह से माना जाता था। यह अर्ध-कीमती रत्न बुरी आत्मा को दूर करता है और मन की स्पष्टता को बढ़ाता है।
मध्यकालीन यूरोप: लापीस लाजुली/राजावर्त को मध्य युग में अफगानिस्तान की खदानों से यूरोप में आयात किया जाता था और रंगद्रव्य बनाने के लिए इसे पीसकर पाउडर भी बनाया जाता था। उपरत्न राजावर्त के इस अल्ट्रामरीन वर्णक रूप का उपयोग लियोनार्डो दा विंची, राफेल और माइकलएंजेलो जैसे कलाकारों द्वारा अपने चित्रों में जीवंत नीले रंग बनाने के लिए किया जाता है।
इस्लामी सभ्यता: राजावर्त इस्लामी संस्कृति में पैगंबर मुहम्मद के सहयोग के लिए प्रसिद्ध था। इसका उपयोग मस्जिदों और पांडुलिपियों को सजाने के लिए किया जाता था, और यह माना जाता था कि राजावर्त उपरत्न उन लोगों के लिए समृद्धि, ज्ञान और सुरक्षा का आशीर्वाद लाता है जिनके पास यह होता है।
Dating back thousands of years, Rajavart has a rich history due to its golden pyrite flecks and deep blue color. The history of Rajavart are as follows:
Ancient Mesopotamia: The history of the Rajavart can be traced back to ancient Mesopotamia, where it was highly famous and valued by the Babylonians, Assyrians, and Sumerians. It was famous as the stone of heaven in Sumerian and known as sag-gi-ga and they related this beautiful gemstone with the goddess Inanna. Rajavart was used in ancient Mesopotamia to create jewelry, and amulets, which were believed to possess protective and magical properties.
Ancient Egypt: In ancient Egypt, the Rajavart Upratna symbolized the eternal life of Gods and heaven and is very famous due to its vivid blue color. At that time the Rajavart/ Lapis Lazuli was used in the burial masks, royalty, and jewelry of pharaohs, even the King of Tutankhamun loved this beautiful stone. This stone was used to form pigment in ancient Egypt time which is ultramarine pigment created by grounding the stone into powder and widely used in Egyptian wall paintings which is famous as Egyptian blue.
Ancient Persia: In ancient Persia, Rajavart Upratna is highly valued for its divinity and royalty. It was believed that the individual who wore this beautiful gemstone got protection, blessings, wisdom, and prosperity. Lapis Lazuli is used in various jewelry of Persian queens and kings and is often used in the construction of tombs, palaces, and temples.
Ancient Greece and Rome: In ancient Greece, Rajavart was famous with the name Sapphirus and in ancient Rome, it was famous with the name Lapis and it was believed to be associated with Shukra and bhrispati Greha i.e. Planet Venus and Jupiter. This semi-precious gemstone wards off evil spirits and enhances clarity of mind.
Medieval Europe: Lapis Lazuli/ rajavart was imported into Europe in the Middle Ages from the mines of Afghanistan and it was also ground to powder to form pigment. This ultramarine pigment form by the Upratna Rajavart is used by artists such as Leonardo da Vinci, Raphael, and Michelangelo to create vibrant blue hues in their paintings.
Islamic Civilization: Rajavart was famous in Islamic culture for its association with the Prophet Muhammad. It was used to adorn mosques and manuscripts, and it was believed that Rajavart Upratna brought blessings of prosperity, wisdom, and protection to those who possessed it.
Characteristics of Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli)
Lapis Lazuli is a blue rock made up of several different minerals, including lazurite, sodalite, hauyne, calcite, and pyrite. Its color varies but it is the intense dark blue, clear, unctuous looking, heavy, cubic in structure. Its chemical formula is Na4 (NaS3 Al) Al2 (SiO4)3.
Properties of Rajavart / Lapis Lazuli
- The crystal structure is cubic.
- Crystallization – Monoclinic, prismatic
- Hardness – 5.5- 6
- Specific Gravity – 3.1
- Fusibility – Infusible
- Habit – Usually massive granular to compact.
- Color – Azure blue
- Lustre – Vitreous
- Streak – Colorless
- Diaphaneity – Translucent
- Cleavage – Prismatic, indistinct
- Fracture – Splintery to uneven.
- Elasticity – Brittle
Prashast Lakshan of Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli)
Reference: Anand Khandekar. 8/ 198
राजवर्तो अल्प रक्तोरुनीलिका मिश्रित प्रभ:।
गुरुश्च मृसण: श्रेष्ठ तदन्यो माध्यम: स्मृत:।।
राजवर्त किंच्चित रक्तिम लिए हुए नीलवर्ण का भारी एवं चिकना पत्थर है। आनंदकार ने इसके अतिरिक्त भोरें जैसा काला रंग का भी राजवर्त बताया है किन्तु इन दिनों राजवर्त में ण तो रक्त मिश्रित नील वर्ण है और न ही भौरें जैसा काला है लेकिन लाल रंग के अनेक बिंदु अवश्य दिखाई देते है।
Grahaya Lakshana of Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli)
Reference: Rasa Trangini. 23/ 192
यत निर्मल: खलु गार शून्य: स्निग्धश्च शारद निर्भरनिभ: सुनील: ।
कृष्णो गुरुश्च शिखी कंठ सम प्रकाशो राजोपल: खलु स एव मतस्तु जात्य: ।।
The Rajavart which is crystal clear, lustrous and dirt free, which is smooth, bluish like the cloudless sky of saratkala or blackish, heavy and as radiant as the neck of peacock, such a sample of Rajavart is considered fit for pharmaceutical use.
जो राजवर्त निर्मल, चिकना, मलरहित, स्निग्ध, शारद ऋतू के आकाश जैसा नील वर्ण का काला, भारी, और मयूरकंठ के जैसा हो इन लक्षणों से युक्त राजवर्त को श्रेष्ठ माना जाता है।
Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli) Aayu (Lifespan of Lapis Lazuli)
Reference: Rasa Jala Niddhi. 3/ 4, Ratna Dhatu Vigyana
न जरां यान्ति रत्नानि मौक्तिकं विद्रुमं बिना।
Though the gemstones of mineral origin are eternal, the Exception is Mukta (pearl) which has a limited lifespan, and also Vidruma- coral. After a few years, it grows old and eventually loses its character, but other gemstones are eternal, but they also need to be maintained and revitalization of them is necessary to get maximum benefits.
आयु- कुछ समय पश्चात् काल प्रभाव से प्रवाल, मुक्ता खराब हो जाते है। किन्तु अन्य रत्नों पर काल का प्रभाव नहीं होता है।
Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli) Aayu after Dharana (Lifespan of Lapis Lazuli after Assumption)
It is believed by scholars that the following gemstones have effectiveness Diamond life span is 10 years, Ruby/ Manik’s 12 years, Yellow Sapphire/ Pukhraj’s lifespan is 15 years, Blue Sapphire/ Neelam’s life span is 15 years, Emerald/ Panna’s life is 12 years, Coral, Hessonite Garnet and Cat’s Eye’s lifespan is 3 to 5 years, Natural Pearl life span is 12 years.
All the other Uparatnas and other semi-precious alternate gemstones are said to have a lifespan of 3 years.
Over some time, when gemstones i.e. precious and semi-precious stones are worn these gems start to get scratches on their surface, and even start losing their high polishing due to which sun rays stop passing through the gems (Ratna) When these precious gems are wear for a long period a greasy layer starts to deposit on their surface which is probably a mixture of lubricants, oils and other materials that a wearer come in contact with it. As the deposition starts to get thicker with time, it even blocks the rays (different wavelengths) that these stones receive from the planets to give effect. Although gemstones are forever yes, their effectiveness for astrological purposes falls and therefore proper and regular maintenance is important.
Therefore, we can consider the life span of semi-precious stone Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli) to be 3 years.
Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli) Used for Different Zodiac Signs (Rashi)
Lapis lazuli/ Rajavart is a beautiful Upratna which has the inclusion of golden pyrite and deep blue hues which give it metaphysical properties and a rich history. Rajavart is associated with below given zodiac sign:
Aries: the individual with the zodiac sign Aries if wearing Rajavart provides strength, and self-expression, and embraces leadership qualities.
Taurus: The individual with the Taurus zodiac sign is symbolized by security, grounding, and stability and when Lapis Lazuli is worn by such an individual it helps these individuals to pursue their goals, determination, etc.
Gemini: The individual with the Gemini zodiac sign when wearing Lapis lazuli, its energy can enhance intellectual pursuits, and stimulate creativity.
Cancer: Cancer (Karka Rashi) ruled by the Chandra Greha (moon planet), is known for its nurturing, and empathetic nature. Lapis lazuli when worn calms the energy of the wearer, gives emotional healing, and enhances serenity.
Leo: Sinha Rashi (Leo zodiac sign) symbolized by the lion, radiates confidence, boosts self-confidence, and encourages the wearer to shine.
Virgo: Kanya Rashi individuals are detail-oriented and when they wear Rajavart gives them efficiency and precision.
Occurrence or Places of Availability of Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli)
Rajavart (Lapis Lazuli) was mined in the Badakhshan province of Afghanistan as early as the 3rd millennium BC and some sources are found as far east as in the region around Lake Baikal in Siberia. Trade in the stone is ancient enough for lapis jewelry to have been found at Predynastic Egyptian and ancient Sumerian sites and as lapis beads at neolithic burials in Mehrgarh, the Caucasus, and even as far from Afghanistan as Mauritania. Its mines are also found in Germany, Myanmar, and Persian countries. In India, it is found in Ajmer of Rajasthan. Most lapis lazuli also contain calcite (white), sodalite (blue), and pyrite (metallic yellow). Other possible constituents are augite, diopside, enstatite, mica, hauynite, hornblende, and nosean. Some lapis lazuli contain trace amounts of the sulfur-rich lullingite variety geyerite. Lapis lazuli usually occurs in crystalline marble as a result of contact metamorphism.
राजावर्त का खनन अफगानिस्तान के बदख्शां प्रांत में तीसरी शताब्दी ईसा पूर्व से किया जा रहा था और ऐसे स्रोत हैं जो साइबेरिया में बैकाल झील के आसपास के क्षेत्र में सुदूर पूर्व तक पाए जाते हैं। पत्थर का व्यापार इतना प्राचीन है कि लैपिस आभूषण पूर्व- राजवंशीय मिस्र और प्राचीन सुमेरियन स्थलों पर पाए जाते हैं और मेहरगढ़, काकेशस और यहां तक कि अफगानिस्तान से लेकर मॉरिटानिया तक नवपाषाणकालीन कब्रगाहों में लैपिस मोतियों के रूप में पाए जाते हैं। इसकी खदानें जर्मनी, म्यांमार और फ़ारसी देशों में भी पाई जाती हैं। भारत में यह राजस्थान के अजमेर में पाया जाता है। अधिकांश लापीस लाजुली में कैल्साइट (सफ़ेद), सोडालाइट (नीला), और पाइराइट (धात्विक पीला) भी होता है। अन्य संभावित घटक ऑगाइट, डायोपसाइड, एनस्टैटाइट, अभ्रक, हाउनाइट, हॉर्नब्लेंड और नोसियन हैं। कुछ लैपिस लाजुली में सल्फर युक्त लुलिंगाइट किस्म के गीयराइट की थोड़ी मात्रा होती है। लैपिस लाजुली/ राजावर्त आमतौर पर संपर्क कायापलट के परिणामस्वरूप क्रिस्टलीय संगमरमर में होता है।
Purification of Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli)
Reference: Rasa Tarangini. 23/ 193
स गव्य मूत्र: स क्षारो निम्बुक द्रव योगत: ।
स्विनौ नृपोपलो यांम शुद्दिमायत्य उत्तमां।
The roughly pounded Rajavarta is tied in a Pottali hung in Dolayantra containing equal ratios of Gomutra, Nimbu Swarasa and Yavaksara as liquid media and subjected for 3 hours (one yama) of Swedana. Later the drug is washed, dried and stored in an airtight container as Suddha Rajavarta for further pharmaceutical use.
कुचले गए राजवर्त को दोला यंत्र में लटकाए गए पोटलि में बांधा जाता है, जिसमें तरल पदार्थ के रूप में गोमूत्र, निम्बू स्वरस और यवक्षार के बराबर अनुपात में लेते हैं और स्वेदन के लिए 3 घंटे (एक यम) रखते होते हैं। बाद में राजवर्त को धोया जाता है, सुखाया जाता है और आगे औषधीय उपयोग के लिए शुद्ध राजावार्त के रूप में एक एयरटाइट कंटेनर में संग्रहीत किया जाता है।
Reference: Rasa Tarangini. 23/ 194
निम्बुक अम्ल समायुक्त: स जल: क्षार संयुत:।
नृपोपल: परस्विनौ विशुध्यति न संशय।।
The roughly pounded Rajavarta is tied in a Pottali hung in Dolayantra containing equal ratios of Nimbu Swarasa, Yavaksara and water media and subjected for 3 hours (one Yama) of Swedana. Later the drug is washed, dried and stored in an airtight container as Shuddha Rajavarta for further pharmaceutical use.
मोटे तौर पर कुचले गए राजवर्त को दोलायंत्र में लटकाए गए पोट्टालि में बांधा जाता है, जिसमें निम्बू स्वरस, यवक्षार और जल को समान मात्रा में डालकर, बाद में स्वेदन के लिए 3 घंटे (एक यम) तक रखा जाता है। बाद में राजवर्त को धोया जाता है, सुखाया जाता है और औषधीय उपयोग के लिए शुद्ध राजावार्त के रूप में एक एयरटाइट कंटेनर में संग्रहीत किया जाता है।
Reference: Rasa Tarangini. 23/ 195
शिरीष पुष्प स्वरसे: स्वेदितस्तु नृपोपल: ।
दोला यंत्री याम मात्रम शुद्दिमायत्य उत्तमां।
The roughly pounded Rajavarta is tied in a Pottali hung in Dolayantra containing Sirisa Puspa Swarasa as liquid media and subjected for 3 hours (one yama) of Swedana. Later the drug is washed, dried and stored in an airtight container as Suddha Rajavarta for further pharmaceutical use.
मोटे तौर पर कुचले गए राजवर्त को दोला यंत्र में लटकाए गए पोटालि में बांधा जाता है, जिसमें तरल मीडिया के रूप में शिरीष पुष्प स्वरस होता है और स्वेदन के लिए 3 घंटे (एक यम) रखा जाता है । बाद में औषध को धोया जाता है, सुखाया जाता है और आगे के फार्मास्युटिकल उपयोग के लिए शुद्ध राजावार्त के रूप में एक एयरटाइट कंटेनर में संग्रहीत किया जाता है।
Incineration of Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli)
Reference: Rasa Tarangini. 23/ 186
लुङ्गाम्बु गंध कोपेतो राजावर्तो विचूर्णित: ।
पुटना सप्त वारेन रजवरतो मृतो भवेत।।
The required quantity of Shuddha Rajavarta is taken in a clean Khalva Yantra. It is added with an equal ratio of Shuddha Gandhaka and triturated to obtain a homogenous mixture. This mixture is added with the required quantity of Nimbu Swarasa, triturated thoroughly, and later dried under hot sun. The dry powder obtained is enclosed in Sarava Samputa and subjected to one Gajaputa. This entire procedure is repeated for times to obtain properly prepared Rajavarta Bhasma.
शुद्ध राजवर्त की आवश्यक मात्रा एक स्वच्छ खल्व यंत्र में ली जाती है। इसमें शुद्ध गंधक को समान अनुपात में मिलाया जाता है और एक समरूप मिश्रण प्राप्त करने के लिए इसे पीसा जाता है। इस मिश्रण में आवश्यक मात्रा में निम्बू स्वरस मिलाया जाता है, अच्छी तरह से मसला जाता है और बाद में तेज धूप में सुखाया जाता है। प्राप्त सूखा पाउडर सारावा संपुटा में संलग्न है और एक गजपुटा के अधीन होता है । उचित रूप से तैयार राजवर्त भस्म प्राप्त करने के लिए यह पूरी प्रक्रिया कई बार दोहराई जाती है।
Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli) Pishti
The fine powder of Suddha Rajavarta is taken in a clean Khalva Yantra added with required quantity of Gulaba Jala (rose water) and triturated thoroughly for 3 days to obtain appropriate Rajavart Pishti.
शुद्ध राजावर्त का बारीक चूर्ण एक साफ खलव यंत्र में लिया जाता है और इसमें आवश्यक मात्रा में गुलाब जल मिलाया जाता है और उचित रजवर्त पिष्टी प्राप्त करने के लिए 3 दिनों तक अच्छी तरह से पीसा जाता है।
Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli) Properties: (Bhasma / Incineration)
Reference: Rasa Tarangini. 199- 200
नृपोपल: कटु तिक्त दीपन: पाचनस्तथा।
शिशिर: पित्त शमनो बृंहणो अति रसायन: ।।
पाण्डु प्रमेह हरण: क्षय शोष निबर्हण: ।
मदात्ययातीयकर छर्दि हिक्का निवारण: ।।
When Bhasma of the Rajavarta is properly prepared it possesses Katu, Tikta Rasa and Deepana (appetizer), Pachana (digestive) properties along with Sheeta Guna (cold potency). It mitigates vitiated Pitta Dosha. Its judicious use for internal administration will improve the body mass (Brihana) and will act as a rejuvenator. It is useful in Pandu Roga (anemia), Parmeha Roga (diabetes), Kshaya Roga, and Sosha Roga. It is also found useful in chronic Madataya (alcoholism) with its complications, Chari Roga and Hikka Roga.
जब राजवर्त की भस्म को ठीक से तैयार किया जाता है तो इसमें कटु, तिक्त रस और दीपन (भूख बढ़ाने वाला), पाचन गुणों के साथ-साथ शीत गुण भी मौजूद होती है। यह ख़राब पित्त दोष को शांत करता है। इसका विवेकपूर्ण उपयोग शरीर के द्रव्यमान (बृहन्ना) में सुधार करेगा और कायाकल्पक के रूप में कार्य करेगा। यह पांडु रोग, मधुमेह, क्षय रोग, शोष रोग में उपयोगी है। यह अपनी जटिलता, चारी रोग और हिक्का रोग के साथ पुरानी शराब की लत में भी उपयोगी पाया गया है।
Reference: Rasa Ratna Sammuchya. 4/ 6
प्रमेह क्षय दुर्नाम पाण्डु श्लेष्म अनिलापह: ।
दीपन: पाचनो वृष्यो राजावर्तो रसायन: ।।
Properly prepared Rajavarta Bhasma is useful in Parmeha Roga, Kshaya Roga, Arsha Roga and Pandu Roga. It mitigates vitiated Kapha and Vata Dosha. It is good Agni dipaka (appetizer), Pachaka (digestive), Vrishya (Aphrodisiac) and Rasayana (rejuvenator).
उचित तरीके से तैयार की गई राजवर्त भस्म प्रमेह रोग, क्षय रोग, अर्श रोग और पांडु रोग में उपयोगी होती है। यह दूषित कफ और वात दोष को शांत करता है। यह अच्छा अग्निदीपक (भूख बढ़ाने वाला), पाचन बढ़ाने वाला, वृष्य (कामोत्तेजक) और रसायन (कायाकल्प करने वाला) है।
Reference: Ayurved Parkash. 5/ 146
राजावर्त: कटु: स्निग्ध: शिशिर: पित्त नाशन: ।
सौभाग्यम कुरुते नृणाम भूषणेषु प्रयोजित: ।।
Rajavarta is Katu (pungent), Tikta (bitter) in taste and has cold potency and eliminates Pittaja disorder. This brings riches to those who wear it in their ornaments.
राजवर्त स्वाद में कटु (तीखा), तिक्त (कड़वा) और ठंडी तासीर वाला तथा पित्तज विकार को दूर करने वाला होता है। यह उन लोगों के लिए धन लाता है जो इसे अपने आभूषणों में पहनते हैं।
Dosage and Usage of Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli)
1/ 2 Ratti to 1 Ratti (62 to 125 mgs) is the general dosage of the Rajavart Bhasma. However, the dosage of the Rajavart Bhasma has to be finalized after thorough consideration of all the relevant factors that affect the dosage like Atura Bala, Vyadhi Bala, etc.
Anupana (Adjuvant / Vehicle) for Use of Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli)
Honey, clarified butter, or any other suitable medicine.
अनुपान- मधु, घृत
Important Formulation of Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli)
- Rajavarta Bhasma
- Ramabana Rasa
- Mehahara Rasa
- Rajavarta Avleha
- Sanjivani Rasa
- Trilokyatilaka Rasa
- Tapyadi Vati
- Bhim Prakarma Rasa
- Maha Vidya Gutika
- Ratnakaarnd Rasa
- Rajavart Rasa
- Rajavartadi Yoga
Recent Research on Raja Varta / Nrip Varta / Aavarta Mani / Nilasma / Avartaka Mani (Lapis Lazuli)
- Sedghi, Yasin & Beheshti, Iraj & Sajjadi, Seyyed. (2023). Structural Study of Lapis Lazuli Stones and Beads of the Shahr-i Sokhta in Sistan. 6. 59- 84. 10. 30699/ PJAS. 6. 20. 59.
- Saleh, Miriam & Bonizzoni, Letizia & Orsilli, Jacopo & Samela, Sabrina & Gargano, Marco & Gallo, Salvatore & Galli, A.. (2020). Application of statistical analyses for Lapis Lazuli stone provenance determination by XRL and XRF. Microchemical Journal. 154. 104655. 10. 1016/ j. micro. 2020. 104655.
- Grayson, Robin. (2017). Lapis Lazuli through time and space – THE WORLD LIST Version One.10. 13140/ RG. 2. 2. 19671. 16807.
- Radini A, Tromp M, Beach A, Tong E, Speller C, McCormick M, Dudgeon JV, Collins MJ, Rühli F, Kröger R, Warinner C. Medieval women’s early involvement in manuscript production suggested by lapis lazuli identification in dental calculus. Sci Adv. 2019 Jan 9; 5 (1): eaau. 7126. doi: 10. 1126/ sciadv. Aau. 7126. PMID: 30662947; PMCID: PMC- 6326749.
- Mangone, A., Caggiani, M. C., Forleo, T., Giannossa, L. C., & Acquafredda, P. (2022). A Possible Natural and Inexpensive Substitute for Lapis Lazuli in the Frederick II Era: The Finding of Haüyne in Blue Lead-Tin Glazed Pottery from Melfi Castle (Italy). Molecules, 28 (4), 1546. https:// doi. org/ 10. 3390/ molecules/ 28041546
- Maybury, I. J., Howell, D., Terras, M., & Viles, H. (2018). Comparing the effectiveness of hyperspectral imaging and Raman spectroscopy: A case study on Armenian manuscripts. Heritage Science, 6 (1), 1- 15. https:// doi. org/ 10. 1186/ s40494- 018- 0206- 1.
- Doty, K. C., Muro, C. K., Bueno, J., Halámková, L., & Lednev, I. K. (2015). What can Raman spectroscopy do for criminalistics? Journal of Raman Spectroscopy, 47 (1), 39- 50. https:// doi. org/ 10. 1002/ jrs. 4826
- Wang, J., Liu, K., Jin, S., Jiang, L., & Liang, P. (2019). A Review of Chinese Raman Spectroscopy Research Over the Past Twenty Years. Applied Spectroscopy. https:// doi. org/ 10. 1177/ 0003- 702819- 828360.
- Burgio, L., Clark, R. J., & Hark, R. R. (2010). Raman microscopy and x-ray fluorescence analysis of pigments on medieval and Renaissance Italian manuscript cuttings. Proceedings of the National Academy of Sciences, 107 (13), 5726- 5731. https:// doi. org/ 10. 1073/pans. 0914797107.
- Chukanov, N. V., Sapozhnikov, A. N., Shendrik, R. Y., Vigasina, M. F., & Steudel, R. (2020). Spectroscopic and Crystal-Chemical Features of Sodalite-Group Minerals from Gem Lazurite Deposits. Minerals, 10 (11), 1042. https:// doi.org/10. 3390/ min/ 10111042
- Saletnik A, Saletnik B, Puchalski C. Raman Method in Identification of Species and Varieties, Assessment of Plant Maturity and Crop Quality- A Review. Molecules. 2022 Jul 12; 27 (14): 4454. doi: 10. 3390/ molecules. 27144454. PMID: 35889327; PMCID: PMC. 9322835.
- Kiefert, Lore & Karampelas, Stefanos. (2011). Use of the Raman spectrometer in gemological laboratories: Review. Spectrochemical Acta. Part A, Molecular and biomolecular spectroscopy. 80. 119- 24. 10. 1016/ j. saa. 2011. 03. 004.
- Tomasini EP, Marte F, Careaga VP, Landa CR, Siracusano G, Maier MS. Virtuous colors for Mary. Identification of lapis lazuli, salt, and cochineal in the Andean colonial image of Our Lady of Copacabana (Bolivia). Philos Trans A Math Phys Eng Sci. 2016 Dec 13; 374 (2082): 20160047. doi: 10. 1098/ rsta. 2016. 0047. PMID: 27799431; PMCID: PMC- 5095525.
- Ali EM, Edwards HG. Analytical Raman spectroscopy in a forensic art context: the non-destructive discrimination of genuine and fake lapis lazuli. Spectrochim Acta A Mol Biomol Spectrosc. 2014; 121: 415- 9. doi: 10. 1016/ j. saa. 2013. 11. 005. Epub 2013 Nov 11. PMID: 242- 87050.
- Chiriu D, Pisu FA, Ricci PC, Carbonaro CM. Application of Raman Spectroscopy to Ancient Materials: Models and Results from Archaeometry Analyses. Materials (Basel). 2020 May 28; 13 (11): 2456. doi: 10. 3390/ ma- 13112456. PMID: 32481651; PMCID: PMC- 7321063.
- Giudice, Alessandro & Re, Alessandro & Calusi, Silvia & Giuntini, Lorenzo & Massi, Mirko & Olivero, P. & Pratesi, Giovanni & Albonico, Maria & Conz, Elisa. (2009). Multitechnique characterization of lapis lazuli for provenance study. Analytical and bioanalytical chemistry. 395. 2211- 7. 10. 1007/ s00216-009- 3039- 7.
- Santi P, Pagnotta S, Palleschi V, Colombini MP, Renzulli A. The Cultural Heritage of “Black Stones” (Lapis Aequipondus/Martyrum) of Leopardi’s Child Home (Recanati, Italy). Materials (Basel). 2022 May 27; 15 (11): 3828. doi: 10. 3390/ m- a15113828. PMID: 35683126; PMCID: PMC- 9181420.
- Lo Giudice A, Re A, Calusi S, Giuntini L, Massi M, Olivero P, Pratesi G, Albonico M, Conz E. Multitechnique characterization of lapis lazuli for provenance study. Anal Bioanal Chem. 2009 Dec; 395 (7): 2211- 7. doi: 10. 1007/ s00216- 009- 3039- 7. PMID: 19705108.
- Gonzalez- Cabrera M, Wieland K, Eitenberger E, Bleier A, Brunnbauer L, Limbeck A, Hutter H, Haisch C, Lendl B, Domínguez- Vidal A, Ayora- Canada MJ. Multisensor hyperspectral imaging approach for the microchemical analysis of ultramarine blue pigments. Sci Rep. 2022 Jan 13; 12 (1): 707. doi: 10. 1038/ s41598- 021- 04597- 7. PMID: 35027601; PMCID: PMC- 8758711.
- Radini A, Nikita E. Beyond dirty teeth: Integrating dental calculus studies with osteoarchaeological parameters. Quat Int. 2023 Apr 20; 653- 654: 3- 18. doi: 10. 1016/ j. quaint. 2022. 03. 003. PMID: 37089908; PMCID: PMC- 10109118.
- Chimenti MS, D’Antonio A, Conigliaro P, Ferrigno S, Vendola A, Ferraioli M, Triggianese P, Costa L, Caso F, Perricone R. An Update for the Clinician on Biologics for the Treatment of Psoriatic Arthritis. Biologics. 2020 Aug 20; 14: 53- 75. doi: 10. 2147/ BTT. S260754. PMID: 32903867; PMCID: PMC- 7445514.
- Ardila-Leal LD, Poutou-Piñales RA, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE. A Brief History of Colour, the Environmental Impact of Synthetic Dyes and Removal by Using Laccases. Molecules. 2021 Jun 22; 26 (13): 3813. doi: 10. 3390/ molecules- 26133813. PMID: 34206669; PMCID: PMC- 8270347.
- Gismondi A, Baldoni M, Gnes M, Scorrano G, D’Agostino A, Di Marco G, Calabria G, Petrucci M, Muldner G, Von Tersch M, Nardi A, Enei F, Canini A, Rickards O, Alexander M, Martínez-Labarga C. A multidisciplinary approach for investigating dietary and medicinal habits of the Medieval population of Santa Severa (7th- 15th centuries, Rome, Italy). PLoS One. 2020 Jan 28; 15 (1): e- 0227433. doi: 10. 1371/ journal. pone. 0227433. PMID: 31990948; PMCID: PMC- 6986732.
- Stock SR, Stock MK, Almer JD. Combined computed tomography and position-resolved X-ray diffraction of an intact Roman-era Egyptian portrait mummy. J R Soc Interface. 2020 Nov; 17 (172): 20200686. doi: 10. 1098/ rsif. 2020. 0686. Epub 2020 Nov 25. PMID: 33234061; PMCID: PMC- 7729041.
- Chocholova E, Roudnicky P, Potesil D, Fialova D, Krystofova K, Drozdova E, Zdrahal Z. Extraction Protocol for Parallel Analysis of Proteins and DNA from Ancient Teeth and Dental Calculus. J Proteome Res. 2023 Oct 6; 22 (10): 3311- 3319. doi: 10. 1021/ acs. jproteome. 3c00370. Epub 2023 Sep 12. PMID: 37699853; PMCID: PMC- 10563166.
- Tsai, H., & Xu, W. (2023). Rapid gemstone mineral identification using portable Raman spectroscopy. Journal of Raman Spectroscopy, 54 (6), 640-650. https:// doi. org/ 10. 1002/ jrs. 6518
- Fu K, Song Y, Zhang D, Xu M, Wu R, Xiong X, Liu X, Wu L, Guo Y, Zhou Y, Li X, Wang Z. Determination of 18 Trace Elements in 10 Batches of the Tibetan Medicine Qishiwei Zhenzhu Pills by Direct Inductively Coupled Plasma- Mass Spectrometry. Evid Based Complement Alternat Med. 2022 Jan 13; 2022: 8548378. doi: 10. 1155/ 2022/ 8548378. PMID: 35069770; PMCID: PMC- 8776486.
- Festa G, Scatigno C, Armetta F, Saladino ML, Ciaramitaro V, Nardo VM, Ponterio RC. Chemometric Tools to Point Out Benchmarks and Chromophores in Pigments through Spectroscopic Data Analyses. Molecules. 2021 Dec 28; 27 (1): 163. doi: 10. 3390/ molecules- 27010163. PMID: 35011394; PMCID: PMC- 8746391.
- Favaro M, Guastoni A, Marini F, Bianchin S, Gambirasi A. Characterization of lapis lazuli and corresponding purified pigments for a provenance study of ultramarine pigments used in works of art. Anal Bioanal Chem. 2012 Feb; 402 (6): 2195- 208. doi: 10. 1007/ s00216- 011- 5645- 4. Epub 2011 Dec 29. PMID: 22203372.
- ANDERSON, B. W., & PAYNE, C. J. (1934). Specific Gravity of Lapis Lazuli. Nature, 134 (3390), 627. https:// doi. org/ 10. 1038/ 134627- a.
- Mangone A, Caggiani MC, Forleo T, Giannossa LC, Acquafredda P. A Possible Natural and Inexpensive Substitute for Lapis Lazuli in the Frederick II Era: The Finding of Haüyne in Blue Lead-Tin Glazed Pottery from Melfi Castle (Italy). Molecules. 2023 Feb 6; 28 (4): 1546. doi: 10. 3390/ molecules- 28041546. PMID: 36838535; PMCID: PMC- 9965324.
- Castellano JJ, Shafii SM, Ko F, Donate G, Wright TE, Mannari RJ, Payne WG, Smith DJ, Robson MC. Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int Wound J. 2007 Jun; 4 (2): 114- 22. doi: 10. 1111/ j. 1742- 481X.2007. 00316. x. PMID: 17651227; PMCID: PMC- 7951235.
- Colomban P. Full Spectral Range Raman Signatures Related to Changes in Enameling Technologies from the 18th to the 20th Century: Guidelines, Effectiveness, and Limitations of the Raman Analysis. Materials (Basel). 2022 Apr 27; 15 (9): 3158. doi: 10. 3390/ ma- 15093158. PMID: 35591492; PMCID: PMC- 9104039.
- Perino, M., Pronti, L., Di Forti, L. G., Rom ani, M., Taverna, C., Massolo, L., Manzari, F., Nucara, A., & Felici, A. C. (2021). Revealing Artists’ Collaboration in a 14th Century Manuscript by Non-Invasive Analyses. Minerals, 11 (7), 771. https:// doi. org/ 10. 3390/ min- 11070771
- Di Martino, D., Benati, G., Alberti, R., Baroni, S., Bertelli, C., Blumer, F., Caselli, L., Cattaneo, R., Cucini, C., Frizzi, T., Gagetti, E., Gironda, M., Greggio, L., Lazzarini, L., Musa, M., Perelli Cippo, E., Riccardi, M. P., & Gorini, G. (2019). The Chiaravalle Cross: Results of a Multidisciplinary Study. Heritage, 2 (3), 2555- 2572. https:// doi. org/ 10. 3390/ heritage- 2030157.
- Flores-Sasso V, Pérez G, Ruiz-Valero L, Martínez-Ramírez S, Guerrero A, Prieto-Vicioso E. Physical and Chemical Characterisation of the Pigments of a 17th-Century Mural Painting in the Spanish Caribbean. Materials (Basel). 2021 Nov 14; 14 (22): 6866. doi: 10. 3390/ ma- 14226866. PMID: 34832268; PMCID: PMC- 8619136.
- Drogosis A, Mamoulakis C, Chrysos E, Tsoucalas G, Michaleas SN, Karamanou M. Medicinal plants in the treatment of urinary tract malignancies during the Araboislamic period (7th– 14th century AD). Arab J Urol. 2022 May 18; 20 (4): 219- 223. doi: 10. 1080/ 2090598X. 2022. 2077002. PMID: 36353473; PMCID: PMC- 9639489.
- Delaney S, Alexander M, Radini A. More than what we eat: Investigating an alternative pathway for intact starch granules in dental calculus using Experimental Archaeology. Quat Int. 2023 Apr 20; 653- 654: 19-32. doi: 10. 1016/ j. quaint. 2022. 03. 004. PMID: 37089909; PMCID: PMC- 10109111.
- Yusuf M, Shabbir M, Mohammad F. Natural Colorants: Historical, Processing and Sustainable Prospects. Nat Prod Bioprospect. 2017 Feb; 7 (1): 123- 145. doi: 10. 1007/ s13659- 017- 0119- 9. Epub 2017 Jan 16. PMID: 28093670; PMCID: PMC- 5315675.
- Forshaw R. Dental calculus – oral health, forensic studies, and archaeology: a review. Br Dent J. 2022 Dec; 233 (11): 961- 967. doi: 10. 1038/ s41415- 022-5266- 7. Epub 2022 Dec 9. PMID: 36494546; PMCID: PMC- 9734501.
- Schmidt CM, Walton MS, Trentelman K. Characterization of lapis lazuli pigments using a multi-technique analytical approach: implications for identification and geological provenancing. Anal Chem. 2009 Oct 15; 81 (20): 8513- 8. doi: 10. 1021/ ac901436g. PMID: 19761220.
- Zhong X, Di Z, Xu Y, Liang Q, Feng K, Zhang Y, Di L, Wang R. Mineral medicine: from traditional drugs to multifunctional delivery systems. Chin Med. 2022 Feb 10; 17 (1): 21. doi: 10. 1186/ s13020- 022- 00577- 9. PMID: 35144660; PMCID: PMC- 8830990.
- Hamerton I, Tedaldi L, Eastaugh N. A systematic examination of color development in synthetic ultramarine according to historical methods. PLoS One. 2013; 8 (2): e50364. doi: 10. 1371/ journal. pone. 0050364. Epub 2013 Feb 13. PMID: 23418413; PMCID: PMC- 3572120.
- Sapozhnikov, Anatoly N., Tauson, Vladimir L., Lipko, Sergey V., Shendrik, Roman Yu., Levitskii, Valery I., Suvorova, Lyudmila F., Chukanov, Nikita V. and Vigasina, Marina F. “On the crystal chemistry of sulfur-rich lazurite, ideally Na7Ca (Al6Si6O24) (SO4) (S3)– nH2O” American Mineralogist, vol. 106, no. 2, 2021, pp. 226- 234. https:// doi. org/ 10. 2138/ am- 2020- 7317.
- Zykova TY, Levitsky VG, Belyaeva ES, Zhimulev IF. Polytene Chromosomes – A Portrait of Functional Organization of the Drosophila Genome. Curr Genomics. 2018 Apr; 19 (3): 179- 191. doi: 10. 2174/ 1389202918666171- 016123830. PMID: 29606905; PMCID: PMC- 5850506.
- Ganio, Monica, Pouyet, Emeline S., Webb, Samuel M., Schmidt Patterson, Catherine M. and Walton, Marc S. “From lapis lazuli to ultramarine blue: investigating Cennino Cennini’s recipe using sulfur K-edge XANES” Pure and Applied Chemistry, vol. 90, no. 3, 2018, pp. 463- 475. https:// doi. org/ 10. 1515/ pac- 2017- 0502
- Kaneva, Ekaterina & Cherepanov, D. & Suvorova, L. & Sapozhnikov, A. & Levitskiy, V. (2011). Orthorhombic lazurite from the Tultui deposit in the Baikal region. Geology of Ore Deposits. 53. 10. 1134/ S107570- 1511070105.
- Wang, Yushen. (2021). The chromophore fading and spectroscopy analysis of lazurite in annealing treatment. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 247. 119117. 10. 1016/ j. saa. 2020. 119117.
- Bolotina, Nadezhda & Sapozhnikov, Anatoly & Chukanov, Nikita & Vigasina, Marina. (2023). Structure Modulations and Symmetry of Lazurite-Related Sodalite-Group Minerals. Crystals. 13. 768. 10. 3390/ cryst- 13050768.
- Kalam, Mohd & Rahman, Shafiqur. (2021). Lajward (Lapis lazuli): Medicinal Potential of a High-Value Gemstone in the Light of Unani Medicine. 10. 389-399.
- Minero‐chemical and provenance analysis of Achaemenian lapis lazuli cylinders from Persepolis Omid Oudbashi, Morteza Hessari, Atefeh Shekofteh 2023, Archaeometry
- Calderon- Mesen, P., Jaikel- Viquez, D., Barrantes- Madrigal, M.D. et al. Multidisciplinary approach to the study of large-format oil paintings. Sci Rep 13, 2143 (2023). https:// doi. org/ 10. 1038/ s41598- 023- 28777- 9
- Wang Y. The chromophore fading and spectroscopy analysis of lazurite in annealing treatment. Spectrochim Acta A Mol Biomol Spectrosc. 2021 Feb 15; 247: 119117. doi: 10. 1016/ j. saa. 2020. 119117. Epub 2020 Oct 27. PMID: 3316- 0131.
- Bolotina, N. B., Sapozhnikov, A. N., Chukanov, N. V., & Vigasina, M. F. (2023). Structure Modulations and Symmetry of Lazurite-Related Sodalite-Group Minerals. Crystals, 13 (5), 768. https:// doi. org/ 10. 3390/ cryst- 13050768.
- Chukanov, N. V., Vigasina, M. F., Zubkova, N. V., Pekov, I. V., Schäfer, C., Kasatkin, A. V., Yapaskurt, V. O., & Pushcharovsky, D. Y. (2020). Extra-Framework Content in Sodalite-Group Minerals: Complexity and New Aspects of Its Study Using Infrared and Raman Spectroscopy. Minerals, 10 (4), 363. https:// doi. org/ 10. 3390/ min- 10040363.
- Chukanov, Nikita & Sapozhnikov, Anatoly & Shendrik, Roman & Zubkova, N. & Vigasina, Marina & Potekhina, Nadezhda & Ksenofontov, Dmitry & Pekov, Igor. (2023). Crystal Chemistry, Thermal and Radiation-Induced Conversions and Indicatory Significance of S-Bearing Groups in Balliranoite. Minerals. 13. 822. 10. 3390/ min- 13060822.
- Siddall, R. (2018). Mineral Pigments in Archaeology: Their Analysis and the Range of Available Materials. Minerals, 8 (5), 201. https:// doi. org/ 10. 3390/ min- 8050201.
- Song, Y., Zhou, L., Wang, Y., Liu, F., Guo, J., Wang, R., & Nevin, A. (2021). Technical Study of the Paint Layers from Buddhist Sculptures Unearthed from the Longxing Temple Site in Qingzhou, China. Heritage, 4 (4), 2599- 2622. https:// doi. org/ 10. 3390/ heritage- 4040147.
- Bonizzoni, L., Kulchytska, O., & Ruschioni, G. (2022). XRF Semi-Quantitative Analysis and Multivariate Statistics for the Classification of Obsidian Flows in the Mediterranean Area. Applied Sciences, 13 (6), 3495. https:// doi. org/ 10. 3390/ app- 13063495.
- Chukanov, N. V., Sapozhnikov, A. N., Shendrik, R. Y., Vigasina, M. F., & Steudel, R. (2020). Spectroscopic and Crystal-Chemical Features of Sodalite-Group Minerals from Gem Lazurite Deposits. Minerals, 10 (11), 1042. https:// doi. org/ 10. 3390/ min- 10111042
- Arizzi, A., & Cardell, C. (2023). A Case Study of Renaissance Wall Paintings in Granada (Spain): Historical–Artistic Analysis, Materials Characterization, and State of Conservation. Minerals, 13 (7), 854. https:// doi. org/ 10. 3390/ min- 13070854.
- Perino, M., Pronti, L., Di Forti, L. G., Romani, M., Taverna, C., Massolo, L., Manzari, F., Nucara, A., & Felici, A. C. (2021). Revealing Artists’ Collaboration in a 14th Century Manuscript by Non-Invasive Analyses. Minerals, 11 (7), 771. https:// doi. org/ 10. 3390/ min- 11070771.
- Fleet, Michael & Liu, Xiaoyang & Harmer-Bassell, Sarah & Nesbitt, H. (1589). The chemical state of sulfur in natural and synthetic lazurite by S K- edge XANES and X-ray photoelectron spectroscopy. The Canadian Mineralogist. 43. 1589- 1603.
- Tauson, Vladimir & Sapozhnikov, Anatoly & Kaneva, Ekaterina & Lipko, Sergey. (2014). Reversion of Incommensurate Modulation in Cubic Lazurite: Example of Reversible Forced Equilibrium?. Natural Resources. 5. 761- 771. 10. 4236/ nr. 2014.512065.
- Ostrooumov, Mikhail & Fritsch, Emmanuel & Faulques, Eric & Chauvet, Olivier. (2002). ETUDE SPECTROMETRIQUE DE LA LAZURITE DU PAMIR, TAJIKISTAN. Canadian Mineralogist – CAN MINERALOG. 40. 885- 893. 10. 2113/scanning. 40. 3. 885.
- Aguayo, T. & Clavijo, E. & Eisner, Federico & Ossa-Izquierdo, C. & Vallette, Marcelo. (2011). Raman spectroscopy in the diagnosis of the wall painting History of Concepcion, Chile. Journal of Raman Spectroscopy. 42. 2143-2148. 10. 1002/ jrs. 2978.
- David, Rosalie & Edwards, H. & Farwell, D. & Faria, D. (2001). Raman Spectroscopic Analysis of Ancient Egyptian Pigments. Archaeometry. 43. 461 – 473. 10. 1111/ 1475- 4754. 00029.
- Kiefer, Wolfgang. (2008). Raman spectroscopy in art and archaeology III. Journal of Raman Spectroscopy. 39. 961- 962. 10. 1002/ jrs. 2059.
- Colomban, Philippe & Caggiani, Maria & Valotteau, Claire & Mangone, Annarosa & Cambon, Pierre. (2013). Mobile Raman spectroscopy analysis of ancient, enameled glass masterpieces. Anal. Methods. 5. -. 10. 1039/ C3AY40648B.
- Farsang, Stefan & Caracas, Razvan & Adachi, Takuji & Schnyder, Cédric & Zajacz, Zoltan. (2023). S 2 -and S 3 -radicals and the S 4 2-polysulfide ion in lazurite, hauyne, and synthetic ultramarine blue were revealed by resonance Raman spectroscopy. American Mineralogist. 108.
- Chukanov, N. & Vigasina, Marina & Zubkova, N. & Pekov, Igor & Schfer, Christof & Kasatkin, Anatoly & Yapaskurt, Vasiliy & Dmitry, Pushcharovsky. (2020). Extra-Framework Content in Sodalite-Group Minerals: Complexity and New Aspects of Its Study Using Infrared and Raman Spectroscopy. Minerals. 10. 363. 10. 3390/ min- 10040363.
- Coccato, Alessia & Bersani, Danilo & Coudray, Alexia & Sanyova, Jana & Moens, Luc & Vandenabeele, Peter. (2016). Raman spectroscopy of green minerals and reaction products with an application in Cultural Heritage research: Raman spectroscopy of green compounds in Cultural Heritage research. Journal of Raman Spectroscopy. 47. 10. 1002/ jrs. 4956.
- Shen Jingyi. (2020). Nondestructive identification of gemstones by using a portable XRF–XRD system: an illuminating study for expanding its application in museums. SN Applied Sciences. 2. 10. 1007/ s42452- 020-2183- 8.
- Hoover, Donald. (2008). Magnetic susceptibility, a better approach to defining garnets. The Journal of Gemmology. 31. 91- 103. 10. 15506/ JoG. 2008. 31. 3. 91.
- Walton, Marc & Gambardella, Alessa & Patterson, Catherine. (2014). Soft X-ray Absorption Spectroscopy and Imaging of Sulfur in Lapis Lazuli. Microscopy and Microanalysis. 20. 2040- 2041. 10. 1017/ S14319276- 14011933.
- Gliozzo, Elisabetta & GRASSI, N. & Bonanni, P. & Meneghini, C. & TOMEI, M. (2010). Gemstones from Vigna Barberini at the Palatine Hill (Rome, Italy). Archaeometry. 53. 469 – 489. 10. 1111/ j. 1475- 4754. 2010. 00558. x.
- Brysbaert, Ann. (2006). Lapis Lazuli in an Enigmatic ‘Purple7rsquo; Pigment from a Thirteenth-Century BC Greek Wall Painting. Studies in Conservation. 51. 10. 2307/ 20619462.
- Nikbakht, Tahereh & Kakuee, Omidreza & Lamehi-Rachti, M. (2016). Ionoluminescence spectroscopy and microscopy of lapis lazuli. Journal of Luminescence. 181. 10. 1016/ j. Jimin. 2016. 09.023.
- Ventura, Giancarlo & Capitelli, Francesco & Sbroscia, Marco & Sodo, Armida. (2019). A Raman study of chalcogen species in sodalite‐group minerals from the volcanic rocks of Latium (Italy). Journal of Raman Spectroscopy. 51. 10. 1002/ jrs. 5665.
- Chukanov, Nikita & Sapozhnikov, Anatoly & Kaneva, Ekaterina & Varlamov, D. & Vigasina, Marina. (2023). Bystrite, Na 7 Ca (Al 6 Si 6 O 24 )S 5 2– Cl: formula redefinition and relationships with other four-layer cancrinite-group minerals. Mineralogical Magazine. 87. 1- 29. 10. 1180/MGM. 2023. 29.
- Hamdan, Mohamed & Lucarini, Giulio & Tomassetti, Maria & Mutri, Giuseppina & Salama, Walid & Hassan, Safiya & Barich, Barbara. (2021). Searching for the Right Color Palette: Source of Pigments of the Holocene Wadi Sura Paintings, Gilf Kebir, Western Desert (Egypt). African Archaeological Review. 38. 10. 1007/ s10437- 020- 09422- 6.
- Nöller, Renate & Feldmann, Ines & Kasztovszky, Zs & Szokefalvi- Nagy, Z. & Kovacs, Imre. (2019). Characteristic Features of Lapis Lazuli from Different Provenances, Revised by µXRF, ESEM, PGAA, and PIXE. Journal of Geological Resource and Engineering. 7. 10. 17265/ 2328-2193/ 2019. 02. 003.
- Zoeldfoeldi, Judit & Kasztovszky, Zs. (2009). Provenance study of Lapis Lazuli by non-destructive prompt gamma activation analysis (PGAA).
- Interdonato, Monica & Marra, Antonella & Maniscalco, Rosanna & Paladini, Giuseppe & Caridi, Francesco & Sebastiano Ettore, Spoto & Venuti, Valentina. (2023). The geological heritage of the historical collections of the University of Messina. Acta IMEKO. 12. 1- 10. 10. 21014/ actaimeko. v12i4. 1481.
- Re, Alessandro & Angelici, Debora & Giudice, Alessandro & Maupas, Elisa & Giuntini, Lorenzo & Calusi, Silvia & Gelli, Nicla & Massi, Mirko & Borghi, Alessandro & Gallo, L.M. & Pratesi, Giovanni & Mando, P. (2013). New markers to identify the provenance of lapis lazuli: Trace elements in pyrite using micro-PIXE. Applied Physics A. 111. 69- 74. 10. 1007/ s00339- 013- 7597- 3.
- Zwaan, J.C. (Hanco). (2016). Scapolite from Badakhshan, Afghanistan. 35. 285- 287.
- Banerjee, Arun. (2014). Correlation between Colour and Fluorescence of Lapis lazuli. Zeitschrift für Naturforschung A. 48. 10. 1515/ zna- 1993- 1222.
- Re, Alessandro. (2012). A provenance study of lapis lazuli: The “collezione Medicea” case study. Nuovo Cimento della Societa Italiana di Fisica C. 35. 201- 210. 10. 1393/ ncc/ i2012- 11322- 6.
- Tauson, Vladimir & Goettlicher, Joerg & Sapozhnikov, Anatoly & Mangold, Stefan & Lustenberg, Esfir. (2012). Sulfur speciation in lazurite-type minerals (Na, Ca) 8 [Al 6Si 6O 24] (SO 4, S) 2 and their annealing products: A comparative XPS and XAS study. European Journal of Mineralogy. 24. 133-152. 10. 1127/ 0935- 1221/ 2011/ 0023- 2132.
- Gaston, Giuliani & Fallick, A.E. & Boyce, Adrian & Pardieu, Vincent & Pham, Van. (2017). Pink and Red Spinels In Marble: Trace Elements, Oxygen Isotopes, and Sources. The Canadian Mineralogist. 55. 743- 761. 10. 3749/cannon. 1700009.
- Law, Randall. (2014). Evaluating Potential Lapis Lazuli Sources for Ancient South Asia using Sulfur Isotope Analysis.
- Calligaro, Thomas & Coquinot, Yvan & Pichon, Laurent & Moignard, Brice. (2011). Advances in elemental imaging of rocks using the AGLAE external microbeam. Nuclear Instruments & Methods in Physics Research Section B-beam Interactions with Materials and Atoms – NUCL INSTRUM METH PHYS RES B. 269. 2364- 2372. 10. 1016/ j. nimb. 2011. 02. 074.
- Zoeldfoeldi, Judit & Richter, S. & Kasztovszky, Zs & Mihaly, Judith. (2006). Where does Lapis Lazuli come from? Non-Destructive Provenance Analysis by PGAA. 34th International Symposium on Archaeometry, 2006- 01- 01, ISBN 84- 7820- 848- 8, pags. 353- 362.
- Wulff-Pedersen, Erik & Neumann, Else-Ragnhild & E.A.J, Burke & Vannucci, Riccardo & Bottazzi, Piero & Ottolini, Luisa & Gjønnes, Jon & Hansen, V. (2000). Origin and structural character of hauyne(ss) in spinel dunite xenoliths from La Palma, Canary Islands. American Mineralogist. vol. 85. page. 1397- 1405. 10. 2138/ am- 2000- 1008.
- Angelici, Debora & Borghi, Alessandro & Chiarelli, Fabrizia & Cossio, Roberto & Gariani, Gianluca & Giudice, Alessandro & Re, Alessandro & Pratesi, Giovanni & Vaggelli, Gloria. (2015). µ- XRF Analysis of Trace Elements in Lapis Lazuli-Forming Minerals for a Provenance Study. Microscopy and Microanalysis. 21. 1- 8. 10. 1017/ S1431927- 61500015X.
- Smith, Gregory & II, Robert. (2009). The presence of trapped carbon dioxide in lapis lazuli and its potential use in geo-sourcing natural ultramarine pigment. Journal of Cultural Heritage – J CULT HERIT. 10. 415- 421. 10. 1016/ j. culture. 2008. 12. 001.
- Casanova, Michele. (2001). Le lapis- lazuli, la pierre precieuse de l’Orient ancien. Dialogues D’histoire Ancienne. 27. 149- 170. 10. 3406/ dha. 2001. 2518.
- Duffin, Christopher. (2014). The pharmaceutical use of Lapis Lazuli in the Ancient East. Pharmaceutical historian. 44. 84- 87.
- Colomban, Philippe. (2013). Rocks as blue, green, and black pigments/dyes of glazed pottery and enameled glass artifacts – A review. European Journal of Mineralogy. 25. 863- 879. 10. 1127/ 0935- 1221/ 2013/ 0025- 2305.
- Sebastiano Ettore, Spoto & Somma, Roberta & Paladini, Giuseppe & Caridi, Francesco & Interdonato, Monica & Majolino, Domenico & Venuti, Valentina. (2023). From lapis lazuli to synthetic ultramarines: a u-Raman spectroscopy investigation on the history and development of the Most Perfect Color. 416- 420. 10. 21014/ tc4- ARC- 2022. 079.
- Hogarth, D. (2011). Lapis Lazuli near Lake Harbour, Southern Baffin Island, Canada. Canadian Journal of Earth Sciences. 8. 1210- 1217. 10. 1139/ e71-112.
- Horak, Jana & Cotterell, Tom. (2012). Characterizing variations in lapis lazuli mineralogy by XRD: use as an archaeological provenancing tool.
- Vaggelli, Gloria & Es Sebar, Leila & Borghi, Alessandro & Cossio, Roberto & Re, Alessandro & Fantino, Fulvio & Giudice, Alessandro. (2019). Improvements to the analytical protocol of lapis lazuli provenance: First study on Myanmar rock samples. The European Physical Journal Plus. 134. 10. 1140/ epjp/ i2019- 12523- 4.
- Bonsall, Clive & Gurova, Maria. (2017). Experimental Replication of Stone, Bone, and Shell Beads from Early Neolithic Sites in Southeast Europe.
- Bicchieri, Marina & Nardone, M. & Russo, P.A & Sodo, Armida & Corsi, M & Cristoforetti, Gabriele & Palleschi, Vincenzo & Salvetti, A & Tognoni, E. (2001). Characterization of azurite and lazurite-based pigments by laser-induced breakdown spectroscopy and micro-Raman spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy. 915- 922. 10. 1016/ S0584- 8547 (01) 00228- 2.
- Tauson, Vladimir & Sapozhnikov, A. & Shinkareva, S. & Lustenberg, E. (2012). Indicative properties of lazurite as a member of the clathrate mineral family. Doklady Earth Sciences. 441. 10. 1134/ S10283- 34X11- 120312.
- Karampelas, Stefanos & Kiefert, Lore. (2012). Gemstones and minerals. 10. 1039/ 978184- 9732741.
- Sapozhnikov, A. & Chukanov, N. & Shendrik, Roman & Vigasina, Marina & Tauson, Vladimir & Lipko, Sergey & Belakovskiy, Dmitriy & Levitskiy, V. & Suvorova, L. & Ivanova, L. (2023). Lazurite: Validation as a Mineral Species with the Formula Na7Ca (Al6Si6O24) (SO4) and New Data. Geology of Ore Deposits. 64. 470- 4 -75. 10. 1134/ S107570- 1522070078.
- Culka, Adam & Jehlicka, Jan. (2018). A database of Raman spectra of precious gemstones and minerals used as cut gems obtained using a portable sequentially shifted excitation Raman spectrometer. Journal of Raman Spectroscopy. 50. 10. 1002/ jrs. 5504.
- Voudouris, Panagiotis & Mavrogonatos, Constantinos & Graham, Ian & Gaston, Giuliani & Tarantola, Alexandre & Melfos, Vasilios & Karampelas, Stefanos & Katerinopoulos, Athanasios & Magganas, Andreas. (2019). Gemstones of Greece: Geology and Crystallizing Environments. Minerals. 9. 461. 10. 3390/ min- 9080461.
- Intarasiri, Saweat & Bootkul, D. & Yu, L.D. & Kamwanna, Teerasak & Boonto, Chonteera & Vilaithong, Thiraphat. (2009). Gemological modification of local natural gemstones by ion beams. Surface and Coatings Technology. 203. 2788- 2792. 10. 1016/ j. surfcoat. 2009. 02. 122.
- Laurs, Brendan. (2015). Gem Notes. The Journal of Gemmology. 34. 386- 402. 10. 15506/ JoG. 2015. 34. 5. 386.
- Hassan, Ishmael. (2000). Transmission electron microscopy and differential thermal studies of lazurite polymorphs. American Mineralogist. 85. 1383-1389. 10. 2138/ am- 2000- 1006.
- Coenraads, Robert & Bon, Claudio. (2000). Lapis Lazuli from the Coquimbo Region, Chile. Gems & Gemology. 36. 28- 41. 10. 5741/ GEMS. 36. 1. 28.
- Gambardella, Alessa & Patterson, Catherine & Webb, Samuel & Walton, Marc. (2015). Sulfur K-edge XANES of Lazurite: Toward Determining the Provenance of Lapis Lazuli. Microchemical Journal. 125. 10. 1016/ j. micro. 2015. 11. 030.
- Renfro, Nathan & Pardieu, Vincent. (2012). Lazurite Inclusions in RUBY. Gems and Gemology. 48. 51- 52.
- Ostrooumov, Mikhail & Fritsch, Emmanuel & Faulques, Eric & Chauvet, Olivier. (2002). Spectrometric study of lazurite from the Pamirs, Tajikistan. Canadian Mineralogist. 40. 885- 893.
- Chukanov, N. V., Sapozhnikov, A. N., Shendrik, R. Y., Zubkova, N. V., Vigasina, M. F., Potekhina, N. V., Ksenofontov, D. A., & Pekov, I. V. (2023). Crystal Chemistry, Thermal and Radiation-Induced Conversions and Indicatory Significance of S-Bearing Groups in Balliranoite. Minerals, 13 (6), 822. https:// doi. org/ 10. 3390/ min- 13060822
- Kuraszkiewicz, K. O. (2022). Long Live the Step Pyramid! Heritage, 5 (3), 2615- 2627. https:// doi. org/ 10. 3390/ heritage- 5030136.
- M., D. (2021). The Forerunners on Heritage Stones Investigation: Historical Synthesis and Evolution. Heritage, 4 (3), 1228- 1268. https:// doi. org/ 10. 3390/ heritage- 4030068
- Vieira, M., Melo, M. J., Nabais, P., Lopes, J. A., Lopes, G. V., & Fernández, L. F. (2023). The Colors in Medieval Illuminations through the Magnificent Scriptorium of Alfonso X, the Learned. Heritage, 7 (1), 272- 300. https:// doi. org/ 10. 3390/ heritage- 7010014.
- Mangone, Annarosa & Caggiani, Maria & Forleo, Tiziana & Giannossa, Lorena & Acquafredda, Pasquale. (2023). A Possible Natural and Inexpensive Substitute for Lapis Lazuli in the Frederick II Era: The Finding of Haüyne in Blue Lead-Tin Glazed Pottery from Melfi Castle (Italy). Molecules. 28. 1546. 10. 3390/ molecules- 28041546.
- Santiago, J., Rivas, T., Dionísio, A., Barral, D., & Cardell, C. (2020). Effect of a SO2 Rich Atmosphere on Tempera Paint Mock-Ups. Part 1: Accelerated Aging of Smalt and Lapis Lazuli- Based Paints. Minerals, 10 (5), 427. https:// doi. org/ 10. 3390/ min- 10050427.
- Spoto SE, Paladini G, Caridi F, Crupi V, D’Amico S, Majolino D, Venuti V. Multi-Technique Diagnostic Analysis of Plasters and Mortars from the Church of the Annunciation (Tortorici, Sicily). Materials (Basel). 2022 Jan 26; 15 (3): 958. doi: 10. 3390/ ma- 15030958. PMID: 35160902; PMCID: PMC- 8838427.
- Patterson, Catherine & Walton, Marc & Trentelman, Karen. (2009). Characterization of Lapis Lazuli Pigments Using a Multitechnique Analytical Approach: Implications for Identification and Geological Provenancing. Analytical chemistry. 81. 8513- 8. 10. 1021/ ac901436g.
- Gambardella AA, Cotte M, de Nolf W, Schnetz K, Erdmann R, van Elsas R, Gonzalez V, Waller A, Iedema PD, Eveno M, Keune K. Sulfur K-edge micro- and full-field XANES identify marker for preparation method of ultramarine pigment from lapis lazuli in historical paints. Sci Adv. 2020 May 1; 6 (18): eaay- 8782. doi: 10. 1126/ sciadv. Day- 8782. PMID: 32494666; PMCID: PMC- 7195155.
References
- Dr. Indradeva Tripathi, Rasaratna Samuchhaya of Vagbhatacharya, 4/8, Hindi translation, 3rd edition, published by Chaukhamba Sanskrit Bhawan, K 37/ 116, Gopal Mandir Lane, Varanasi – 221 001.
- National Formulary of Unani Medicine. Part III. New Delhi: Central Council for Research in Unani Medicine; 2001. 20 р.
- National Formulary of Unani Medicine. Part I. New Delhi: Central Council for Research in Unani Medicine; 2006. р. 46, 72, 78, 110, 231.
- Dr. Harishankar Pathak, editor, ‘Jatak Parijat’ of Daivagya Vaidyanath, 2/21, Hindi translation, 1st edition, published by Chaukhamba Surabharati, Varanasi – 221001, 2012.
- Khan A. Muheet-i-Azam. Vol 2. New Delhi: Central Council for Research in Unani Medicine; 2013. p. 788- 90.
- Zhu, M., & Guo, Y. (2023). New Insights into the Coloration Mechanism in Spessartines and the Impact of Munsell Neutral Grey Backgrounds. Crystals, 13 (11), 1529. https:// doi. org/ 10. 3390/ cryst- 13111529
- Zhao, Z., & Guo, Y. (2021). Color Quality Evaluation of Bluish-Green Serpentinite Based on the CIECAM16 Model. Minerals, 12(1), 38. https:// doi. org/ 10. 3390/ min- 12010038
- Hakim A. Bustanul Mufradat. New Delhi: Idara Kitabu Shifa; 2011. 112 p. Rafiquddin M. Kanzul Advia Mufrada. AMU, Aligarh: University Publication Unit; 1985. p. 389, 390
- Dubey, Sonali & Kumar, Rohit & Pati, Jayanta & Kiefer, Johannes & Rai, Awadhesh. (2021). Rapid Analysis of Chemical Composition and Physical Properties of Gemstones Using LIBS and Chemometric Technique. Applied Sciences. 11. 6156. 10. 3390/ app- 11136156.
- Harishankar Pathak, editor, ‘Faladipika’ of Mantreshwara, 2/29, 1st edition, Hindi translation, published by Chaukhamba Surabharati, Varanasi – 221001.
- Dr. Vilas Dole, Dr. Parkasha Paranjpe, A textbook of Rasa Shastra, reprinted 2016, Chaukambha Sanskrit Pratishthana, Delhi.
- National Formulary of Unani Medicine. Part V. New Delhi: Central Council for Research in Unani Medicine; 2008.
- Qarabadin Sarkari. New Delhi: Central Council for Research in Unani Medicine.
- Dr. Ravinder Angadi, A textbook of Rasa Shastra, Iatro- Chemistry and Ayurveda Pharmaceutics, First edition, Chaukambha Surbharti Parkashana, Varanasi.
- P. Himsagara Chandra Murthy, Rasa- Shastra, the Mercurial system, Chaukambha Sanskrit series office, Varanasi.
- Dr. Damodara Joshi, Rasa Amritam, Chaukambha Sanskrit Sansthana, Varanasi. Pio, Edwina & Kilpatrick, Rob & Le Fevre, Mark. (2017).
- Navratna – the nine gems: Illuminating enablers, barriers, and vignettes of South Asian women leaders. South Asian Journal of Business Studies. 6. 00- 00. 10. 1108/ SAJBS- 05- 2016- 0045.
- Dokras, Uday. (2020). Navaratna (GEM) Therapy.
- R., Shyam & Aithal, Sreeramana. (2023). Connecting Planetary Gods (Navagrahas) with Gods of Management (9 Ms). 2. 33- 47. 10. 5281/ zenodo. 8112182.
- Baitar I. Al- Jami Li- Mufradatul Advia waAl- Aghzia. Vol. 2. New Delhi: Central Council for Research in Unani Medicine; 2000. p. 348, 349.
- Kabiruddin M. Makhzanul Mufradat. New Delhi: Idara Kitabus Shifa; 2014. p. 240, 241.
- Ghani N. Khazainul Advia. New Delhi: Idara Kitabus Shifa; 2011. p. 765, 766.
- Bharati Kumari, Shreebhagwan Singh, Umesh Chandra Sinha. Correlation of Ayurveda and Astrology on Health. Ayushdhara. 2022 Sep. 30 [cited 2024 Jan. 25]; 9 (Supp- l1): 86- 9. https:// ayushdhara. in/ index. php/ ayushdhara/ article/ view/ 1007
- Seraj, Snaa & monjur- e- khudha, Mohammad & Aporna, S.A. & Khan, Shamiul & Islam, Farukul & Jahan, Rownak & Mou, S.M. & Khatun, Z. & Rahmatullah, Mohammed. (2011).
- Use of semiprecious- stones for preventive and curative purposes: A survey among the traditional medicinal practitioners of the bide community of Bangladesh. American-Eurasian Journal of Sustainable Agriculture. 5. 263- 269.
- Savage A. Spring Books: Precious and semi-precious gems. Br Med J (Clin Res Ed). 1981 Apr 18; 282 (6272): 1295. PMCID: PMC- 1505318.
- FORBES TR. Chalcedony and childbirth: precious and semi-precious stones as obstetrical amulets. Yale J Biol Med. 1963 Apr; 35 (5): 390- 401. PMID: 13958688; PMCID: PMC- 2604313.
- Kabiruddin M. Bayaz-i-Kabir. 5thed. Vol. 2. New Delhi, India; Aijaz Publishing House; 1934. p. 426, 430, 452, 453.
- Ashraf MH. Makhzanul Mufradat Ma Murakkabat wa Khwasul Advia. New Delhi: Aijaz Publishing House; 2011.
- Nasir MAH. Mufradat Nasiri Mae Takmila. India: Qaisari Publication. YNM.
- Anandan AR, Thulasimani. Siddha Materia Medica (Mineral and Animal Kingdom). Department of Indian Medicine and Homeopathy, Chennai; 1985.
- National Formulary of Unani Medicine. Part VI. New Delhi: Central Council for Research in Unani Medicine, 2011. Qarabadin Majidi. Delhi: Alami Printing Press. YNM.
Was this Page Helpful?
Read More Articles
Sphatik Stone (Quartz – Rock Crystal)
Know the Astrological and Ayurvedic Benefits of Sphatik Stone, which is also…
Firoza Stone (Turquoise – Pairojaka)
Know the Astrological and Ayurvedic Benefits of Firoza Stone, which is also…
Amber Stone (Trinkant Mani – Kaharwa)
Know the Astrological and Ayurvedic Benefits of Amber Stone, which is also…